EX-78-5
1977 DRILLING AND GEOPHYSICAL
RESULTS -- BROMIDE PROJECT
BROMIDE DISTRICT, RIO ARRIBA CO.,
NEW MEXICO

Barry E. French February 8,1978

N.M. Bureau of Mines & Mineral Resources Socorro, N.M. 87801 File Data

Confidential __

Open Veourtes, U.S. Erax

1977 DRILLING AND GEOPHYSICAL RESULTS --BROMIDE PROJECT, BROMIDE DISTRICT, RIO ARRIBA COUNTY, NEW MEXICO

SUMMARY

The Bromide Project, a product of our 1975 massive sulfide reconnaissance, was tested last summer with two diamond drill holes having a combined footage of 2129 feet. The first hole, B-1 (inclined 55°, bearing N45°E), was started on May 8, 1977, and completed in 33 days to a total depth of 830 feet. The second hole, B-2 (inclined 50°, bearing N10°E), was started on June 9, 1977, and completed in 48 days to a total depth of 1299 feet. B-1 cost \$18,064 or \$21.76 per foot and B-2 cost \$34,590 or \$26.63 per foot. The total cost of both holes was \$52,654 or \$24.73 per foot.

The work was done by Connors Drilling Inc. Most of the drilling was done in two 10-hour shifts per day with a 2-man crew per shift. Aside from rather frequent (non-chargeable) mechanical breakdowns, no major drilling problems were encountered.

Detailed mapping during the summer of 1976 established the presence of weak, but stratabound, copper mineralization in a $1-\frac{1}{2}$ to 2-mile belt of meta-andesitic schists. Last summer's drilling tested the southeastern end of this zone in the vicinity of the Pay Role and Sardine shafts.

Both holes show that oxidation has penetrated deeply along fractures, as only the last several hundred feet of B-2 was completely unoxidized. As expected, the rock in both B-1 and B-2 was primarily a soft, chloritic-sericitic schist representing andesites and agglomerates with minor intervals of ashflow and pelitic sediments. B-2 bottomed in granodioritic gneiss which probably intrudes the schist.

Strong chloritic and sericitic alteration along with blebs and streaks of carbonate occurred throughout B-1 and most of B-2. Epi-

dotization was encountered midway in B-2 and increased downward. In the last 200 feet of B-2, chlorite gave way to biotite and silification increased in the bottom 100 feet as the intrusive gneiss was approached.

The results of our ground magnetic survey were confirmed. Disseminated magnetite was abundant in B-1 and down to 950 feet in B-2. This coincided with a surface magnetic high bounded on the NW by a steep downward gradient. From 950 feet to the bottom, magnetite was practically nil.

Drilling showed a 1500 feet width of weakly disseminated copper mineralization from B-1 northwest to the contact of barren intrusive in the bottom of B-2. Although no ore intercepts were encountered, far more copper was visible in the core than is apparent on the surface. Chalcopyrite, (with minor pyrite and pyrrhotite) finely disseminated and locally in stratabound blebs and stringers, is the primary ore mineral. At least two cycles of erosion caused deep weathering which locally altered the original sulfides to bornite and to native copper in the oxidized zones. From 950 feet (where magnetite ceases) to the bottom of B-2 (350 feet) pyrrhotite becomes the dominant sulfide.

Both holes contain higher grade intervals of native copper. However, assays showed in every case that the "splashy" nature of native copper caused the visual copper content to be greatly overestimated. The highest copper value in B-1 was from chalcopyrite in a 1-foot interval at 788 to 789 feet. It ran 6000 ppm Cu, 0.05 ppm Au, and 0.8 ppm Ag. The native copper zones were all less than 1000 ppm Cu with no Au or Ag. In B-2 the highest copper assay was 1250 ppm with Au-Ag similar to B-1. Assays in both holes were uniformly low for lead and zinc and were generally nil for gold and silver.

One object of the drilling was to determine the all important "hangingwall-footwall" contact. Unfortunately, this is still

uncertain. So far, all the rocks drilled, except the intrusive gneiss, exhibit footwall disseminated mineralization. The gneiss, which does not crop out, probably does not represent the barren hangingwall, but rather is a sill-like body similar to that which crops out northwest along strike on the hill above the Whale shaft. Prior to drilling, the hangingwall was postulated to the NW in the direction of drilling. Evidence from the core for stratigraphic top and bottom is conflicting, and additional drilling will be needed for a positive determination.

Subsequent to drilling, a new EM system (MaxMin), expecially designed to detect disseminated "massive" sulfides, became available. Results of this survey were encouraging. Several conductors were found and verified. One of the most intriguing occurs over the outcrop of altered meta-ashflow just north of the Ora patented claim. The number of conductors increases to the NW in the area of interest, but the most consistent conductive zone parallels the contact of the altered meta-ashflow with the meta-andesitic schists in the north part of Section 15.

In November, 1977, land previously held by the competition became available for staking. As a result, we were able to claim all the land we originally wanted. U.S.B. now has 56 unpatented claims and controls the entire 2-mile belt of favorable hunting ground.

The potential for economic volcanogenic mineralization is still very much alive at Bromide. Next summer we are planning for 5000 feet of new drilling with primary emphasis being placed on testing the best-looking EM conductors. The exact location of the new drill holes will be decided after the EM report is received and the data reviewed with the geophysicist.

TABLE OF CONTENTS

		Page No.
Frontispie	ce - Fall colors in the Bromide District	
General		2
Land Status	S	2
Drilling .		3
Geology and	d Mineralization	5
B-1		7
B-2		9
Geophysics		11
I.PResi	istivity	11
Magnetics	5	12
Max Min 1	EM	12
Conclusions	s and Recommendations	15
4		
	FIGURES	
Figure 1.	Generalized Section of Drill Hole B-1	in pocket
Figure 2.	Generalized Section of Drill Hole B-2	ST 11
Figure 3.	Ground Magnetic Profiles, Lines 1-A, 2-A, & 4-A	13
Figure 4.	Ground Magnetic Profile, Line 3-A	14
	PLATES	
Plate 1A.	View of Drill hole B-1 with Connors Drilling diamond core drill on location	4
Plate 1B.	View of B-l drill site after completion of hole	4 .
Plate 2A.	View of Barry French deciding the best way to drill drill hole B-2	6
Plate 2B.	View of Wesdrill Model 60 on location at drill site B-2	6
	MAPS	
Map 1. Inc	dex of the Bromide District	1 .

- iv -

EX-78-5

TABLE OF CONTENTS (Cont'd)

			Page No.
Map	2.	Geology and Location of 1977 Drill Holes	in pocket
Map	3.	Location of Fill-in Magnetic Lines and Revised Magnetic Contours	i All profile
Map	4.	Preliminary Copy, EM Plan Map	89 IS
Appe	end i o	<u> </u>	Following page 16

Map 1. Index of the Bromide District, Rio Arriba County, New Mexico

GENERAL

The Bromide Project, as shown on Map 1, is located about 55 miles northwest of Taos in northernmost New Mexico. It is situated on the main ridge of the Tusas mountains at an elevation just under 10,000 feet. Inspite of the elevation, the topography is open and rolling and relief is gentle.

Drilling was the outgrowth of our New Mexico massive sulfide reconnaissance in 1975 (USB report of Dec. 8, 1975) and of detailed mapping done in 1976 (USB report of Feb. 3, 1977). Work began under my supervision on May 8 and was completed in about $2\frac{1}{2}$ months on July 26, 1977. A total of 2129 feet was drilled in two angle holes, B-1 and B-2. Both holes were located in the SW $\frac{1}{4}$ of Section 14, T28N, R7E, as shown on Map 2.

Rather than commuting from Taos (the nearest motel accommodations), I lived at drill site B-1 in a mobile camper. The core was logged on site and sent to Tucson for splitting. Splitting and assaying was done during the fall from the end of September through most of December. Detailed alteration logs will be made this winter. The preliminary logs along with assays are appended.

LAND STATUS

Acquiring the land needed to cover the area of interest at Bromide has been a long, slow process. Starting in 1975 we acquired a lease on 4 patented claims in the heart of the area. Except for the Pay Role lode, all other land is part of the Carson National Forest and in 1975 was already covered with unpatented claims belonging to two other companies (See USB Report of Dec. 8, 1975).

In 1976 one company dropped their claims and we were able to enclose part of the patented claims with our Tusas 1-11 unpatented claims. Since both holes were located on Tusas claims and the group is contiguous, drilling last summer was more than adequate for the annual assessment work due on these claims in 1977.

- 2 -

Following drilling and EM results, 15 more unpatented claims were added in August and September 1977. Finally in November, all the ground we wanted became available and an additional 30 claims were staked. USB now has a total of 56 unpatented claims in the Tusas group covering an area of about 2 square miles.

The only other land needed is the Pay Role patented claim which is adjacent to our leased group. One last visit to the State Property Tax Department in Santa Fe proved fruitful and the owner was finally located. However, he also claimed ownership of two of our leased claims (the Whale group). This conflict was resolved by our land and legal staff in USB's favor and negotiations are underway for the Pay Role.

Memos and maps of the current land status are on file with the Land Department and in the Tucson office.

DRILLING

Drilling was done by Connors Drilling Inc. using a Wesdrill Model 60 diamond core rig (See Plates 1A, 2A, and 2B). Drill hole summary sheets providing a detailed breakdown of drilling operations and costs for B-1 and B-2 are appended. The cost totals are as follows:

<u>Hole</u>	Total Depth	Cost	Cost/Ft.
B-1	8301	\$18,064 \$34,590	\$21.76
<u>B-2</u>	1299'	\$34,590	\$26.63
TOTALS:	2129	\$52,654	\$24.73

Connors' head driller for the job, Jerry Davis, did an excellent job inspite of some aggravating mechanical and personnel problems. Jerry's hard work greatly minimized those delays, and he should be requested on any future jobs by Connors. When the rig (and crew) were running smoothly, Connors worked 20 hours a day using two 10-hour shifts of two men per shift. Both holes were started with a low pressure, air hammer drill. This worked fine on each hole down to about 70 feet; at this point too much mud build-up from

Plate 1A. Drill hole B-1 with Connors Drilling Inc. Wesdrill Model 60 diamond core drill on location.

Plate 1B. B-1 dri site after completion of mole (ore body obvious lies further to the right and side of picture).

the soft schist stopped the hammer, and casing was set for core. Because of this, the hammer didn't save any money, and future drilling should be cored from surface.

Core recovery was generally excellent and drilling problems fairly minor. The nature of the schist caused the holes to eventually mud-up to the point where it was hard to get the core barrel to the bottom. The only thing that overcame this problem and kept the holes clean, was the use of soluble oil. This oil is sometimes hard to find, so on future jobs in the area, an adequate supply of soluble oil should be obtained prior to start-up. Lack of nearby water due to a severe drought caused some delay, and we finally had to buy water from Tres Piedras. In future drilling, a larger storage tank or two water trucks should be used. Weather went from one extreme to the other. Just before the Forest Service completely shut us down due to extreme fire danger in mid June, the rains came. Before the end of the job, there was so much rain that access on muddy roads became a real problem.

Considering the remoteness of the area, the problems could have been much worse and the drilling in general went pretty well. The estimated on-bottom penetration rate was about 60 feet per 10-hour shift or 120 feet per day. Delays, mostly non-chargeable, lowered the inclusive penetration rate to 32 feet per 10-hour shift for B-1 and 22.5 feet for B-2.

GEOLOGY AND MINERALIZATION

A detailed account of the geology, mineralization, and assays for each hole is appended in the Diamond Drill Log. Two sections, Figure 1 and 2, are also included in the map pocket.

During the summer of 1976 a 2-mile long, 2500-foot wide, zone of weak, but stratabound copper mineralization was deliniated in the Bromide District (See USB Report of Feb. 3, 1977). It strikes about N65°W extending from the Cozart workings on the NW, several thousand feet past the Pay Role shaft on the SE. The zone is truncated at

Plate 2A. U.S.B. geologist making sure which way to drill at drill site B-2.

Plate 2B. Wesdrill Model 60 on location at drill site B-2.

both ends by NE-trending cross faults. The mineralization occurs in near vertical, Precambrian Moppin group schists, which have been intruded on the NE margin by a barren, granodioritic gneiss. Since metamorphism in the area was low grade, original textures in the schist are often recognizable. The schist represents an interlayered pile of andesitic flows and stretched pebble agglomerates, along with pelitic sediments and conglomerate. This sequence is capped? (up and down still not certain) by an altered, quartzeye porphyry ashflow near the intrusive gneiss contact. These rocks represent a perfect host environment for volcanogenic massive sulfide mineralization.

Following mapping, an I.P.-Resistivity Survey was made and no anomalies were detected. EM was not used since, prior to this summer, there was no EM system available for disseminated conductors and especially conductors over 200 feet in depth. Since geophysics couldn't define a target, our first drill hole was located on the basis of mineralization. With the exception of the Cozart workings, which belonged to Nord Resources at that time, the strongest copper mineralization reportedly occurred at the 270-foot level in the Pay Role shaft.

<u>B-l.</u> Drill hole B-l was located 320 feet SW of the Pay Role with an inclination of -55° on a bearing of N45°E. It was designed to intersect any mineral present about 400 to 500 feet (depending on dip) below the shaft (See Figure 1). It was bottomed at 830 feet (about 700 feet, vertically), well on the NE side of the shaft.

The schist in B-1 generally dips steeply SW and consists mostly of interlayered andesitic agglomerates and several types of andesitic flows from dense, fine-grained to porphyritic. An agglomerate at 78 feet exhibits possible graded bedding which suggests that the beds are overturned and that stratigraphic up is to the NE or down the hole. Only two ashflows are present. One thin quartz-poor bed that might be a sediment occurs at 200 feet and the other,

33 feet thick with minor quartz eyes and definitely an ashflow, was encountered at 546 feet, exactly on the downward projection of the Pay Role shaft. Several thin, pelitic sedimentary units were also identified in field logging. A breccia, labeled "mill-rock" on the log and occurring at 207, 263, and 274 feet, was definitely identified as sedimentary following core splitting. In fact, detailed logging (this winter) will probably reveal far more sediments in B-1 than originally indicated by the field log.

Most of the schists in B-l have been strongly chloritized and/or sericitized. Carbonate is quite common as streaks and blebs filling fractures and vugs. Disseminated magnetite is abundant and ubiquitous. Partial oxidation marked by iron-staining extends off and on to the bottom of the hole.

Most of the hole is very weakly mineralized. Two 3/4-inch wide "highgrade" seams of stratabound chalcopyrite and pyrrhotite occur at about 450 feet near an andesite-agglomerate contact. This could well represent the downward extension of the supposed Pay Role mineralization. If so, the Pay Role "orebody" must be very lenticular and no more than 150 feet in height. One 2-inch band of "ore-grade" chalcopyrite is present near the bottom of B-1 at 788 feet. The rocks on either side were practically barren, but a 1-foot interval including the 2-inch band gave the following assays (in PPM): 6000 Cu, 0.05 Au, and 0.8 Ag.

Most of the mineralization in B-l consists of fine, weakly disseminated chalcopyrite with usually lessor amounts of pyrite and/or pyrrhotite. Some bornite is detectable near 700 feet and whereever the sulfides have been oxidized, chalcopyrite has been altered to native copper. It was noted that copper coats some magnetite crystals and is often associated with magnetite concentrations. Thus, magnetic highs could be significant.

Two zones of more abundant disseminated native copper were penetrated: one $3\frac{1}{2}$ -foot interval at 177 feet and a 4-foot interval (with

cuprite) at 629 feet. Visual estimates, especially for the second interval, would be on the order of 1% Cu. However, assays (verified by several different checks and prep methods) yielded surprisingly low values -- 145 and 305 ppm Cu, respectively. Gold and silver were nil, as they were in the rest of the hole, except for a slight increase with the 2-inch band of copper at 788 feet. Lead and zinc assays were uniformly low and well within background range.

It was concluded that B-l was entirely within the disseminated footwall or root zone of our conceptual volcanogenic system. Since we were still in mineralization at the bottom and stratigraphic up was thought to be to the NE, the second hole was located further to the NE in about the same NW-SE position. It doesn't quite overlap the rocks penetrated by B-l, leaving an untested gap of about 450 feet.

B-2. Drill hole B-2 was located near the NE corner of the Pay Role patented claim with an inclination of -50° on a bearing of NlOE. It was situated to intersect a magnetic high, the downward projection of the copper-bearing Sardine lode, and then a steeply descending magnetic gradient (See Figure 2). We also hoped that (besides hitting ore) it would pin down the critical footwall-hangingwall interface. This may have been accomplished, but probably not. B-2 was bottomed at a depth of 1299 feet (about 965 feet, vertically). Among other things, the hole completely confirmed the surface magnetic data.

The schists in B-2 generally dip steeply SW with only a few reversals to the NE. It consists again mostly of interlayered andesite flows and andesitic agglomerates. Several thin ashflows occur in the upper 250 feet and one 34-foot, possible ashflow occurs at the base. Only two sedimentary units were identified for sure in field logging. The upper one at 259 feet is 28.5 feet thick and is a gneissic, arkosic fragmental with a 6-inch chert band at 276 feet. The lower unit at 1112 feet is about 50 feet thick and is a dark,

fine-grained, biotitic rock with a possible conglomerate at the upper contact. Again, the position of this conglomerate suggests that "up" is down the hole to the NE. An 8-foot quartz dioritic sill intrudes the schists about midway in the hole, and at the bottom, the hole passes through a hybrid zone into 3 feet of barren granodioritic gneiss. Unfortunatley, as can be seen on Figure 2, this is not the hangingwall, but is probably a large sill-like offshoot from the main mass of granodiorite which crops out further to the NE. Although this basal sill(?) doesn't crop out above the drill hole, a very similar situation exists in outcrop on the hill above the Whale shaft to the NW. Even the epidote build-up in B-2 toward the sill(?) is similar to that at the Whale (See Map 2).

B-2 exhibits more alteration types than B-1. Down to about 950 feet it is quite similar with abundant chlorite, sericite, magnetite and carbonate. However, at about 600 feet, epidote begans flooding along some fractures, increasing downwards as veins and flooding. Wherever epidote floods magnetite-bearing rock, magnetite is absent in the epidotized zones. As mentioned, magnetite terminates abruptly at about 950 feet and this corresponds exactly to a sharp magnetic gradient on the surface. Chloritization diminishes from this point, and at 1112 feet it abruptly gives way to biotite. From 1227 feet to the intrusive gneiss the schist is well silicified. The silica and epidote are secondary to chlorite and magnetite and undoubtedly are related to the intrusive; thus representing post-volcanogenic alteration.

Like the first hole, B-2 revealed weakly disseminated copper mineralization (See Figure 2). Mostly native copper was encountered down to 300 feet. Chalcopyrite and bornite (probably after chalcopyrite) in unoxidized zones increase from 300 feet downwards and by 550 feet native copper and most oxidation ceased. Sporadic copper sulfide occurred to about 1000 feet, where it gave way to pyrrhotite. Pyrrhotite occurred on fractures, and disseminated, down to the intrusive gneiss contact. The apparent chalcopyrite in the

last 100 feet (See Figure 2) must have been mostly tarnish, since assays were generally less than 100 ppm from 1000 feet to the bottom. The pyrrhotite began (-950 feet) where magnetite generally ceased. The disseminated nature of the sulfides in B-2 indicates that we are still in volcanogenic footwall rocks. The hangingwall contact has yet to be found.

Assays in B-2 were all in the geochemical range (See drill log, appended). The highest copper values were on the order of 1200 ppm. Gold, lead and zinc, as in B-1, were generally nil or well within background values. Silver was slightly anomalous (geochemically) in zones of higher copper values.

The copper distribution in B-2 suggests several cyclic pulses of mineralization. From the bottom upwards, copper increases sporadically, but gradually, to a high of 1250 ppm at 573 to 571 feet.

Above 571 feet it drops to 40 ppm and then builds up again to 1200 ppm at 479.4 to 476.5 feet. There is a slight build-up to the 300 ppm's at 340 to 330 feet and then a final increase up to 1000 ppm at 174.6 to 173 feet. Contrary to the stratigraphic evidence which indicates that "up" is down the hole to the NE, the cyclic copper build-ups in B-2 suggest that "up" is to the SW. Hopefully, detailed logging (or more drilling) will solve this conflict.

Bull quartz veins were more common in B-2. In both holes, they were generally barren with only rare blebs of copper. As also seen in the surface mapping, they appear to be associated with the gneissic intrusive and are post-volcanogenic copper in age.

GEOPHYSICS

I.P.-Resistivity. Because most massive sulfides in the southwest are electrically disseminated, we initially employed a limited I.P. survey over the SE half of the potential area. No anomalies were detected, but being optimistic, this could mean that our deposit exists at a depth of greater than 200 feet. The deeper penetrating, wider dipole spreads could easily miss a narrow body below this depth

and the shorter dipole spacings couldn't penetrate more than 200 feet (See USB Report of Feb. 3, 1977 and accompanying MGS reports). Since the detection limit of conventional ground EM systems at that time was ±200 feet, no further geophysics were tried.

<u>Magnetics</u>. Ground magnetic profiles were made along with the I.P. survey. Contouring this data resulted in a magnetic high, sub-parallel to the zone of copper occurrences and intersecting the zone in the vicinity of the Pay Role shaft.

During the drilling this past summer, I ran four fill-in magnetic lines. Profiles of these are shown on Figures 3 and 4 and a corrected contour overlay is included as Map 3. These lines confirmed the initial data and indicated a steep, descending gradient on the NE edge of the high. Magnetite in drill hole B-2 agreed with the surface work and indicates that the gradient and magnetic low reflect an intrusive contact rather than a barren hangingwall above a magnetite-rich, volcanogenic alteration pipe.

Drilling did show that the copper has an affinity for magnetite concentrations, so perhaps magnetics will be useful when combined with new EM data and future drilling.

Max Min EM. Max Min, made by Apex of Toronto, was designed to detect electrically disseminated massive sulfides. The system recently became available in the U.S., and during August and September an initial survey followed by fill-in work was done by Applied Geophysics of Salt Lake. The final report has not yet been received, but a preliminary l"=1000' overlay is enclosed as Map 4(the final map will be l"=500' and will overlay Map 2).

Results were very encouraging. Several conductors and possible conductors were found and verified by the fill-in work and VLF EM. Much of this year's drilling will be aimed at testing these conductors. According to the geophysicist, Dave Smith, the best conductors, which should be tested first, are those labeled "A" and "B" on Map 4. Although no mineral is present on the surface, these

HOTE:

(1) TOTAL FIELD READINGS WITH A
UNIMAG HODEL G-836 PROTON MAGNETOM.

(2) 1976 M.G.S. VERTICAL FIELD: 1979 TOTAL FIELD EQUALS 300: 53,3008 AS MEASURED AT 1976 M.G.S. BASE 2.

GROUND MAGNETIC PROFILE BROMIDE PROJECT RIO ARRIBA COUNTY, NEW MEXICO

HORIZ. SCALE: 1"=1000"

VERT. SCALE: 1" = 10008

June 77 Bef conductors coincide with an outcrop of altered, quartz-eye porphyry ashflow, which geologically makes them even more attractive. Southeast of the above, two conductors follow the altered ashflow-andesite contact stopping just short of drill hole B-2. Numerous, but less continuous conductors, exist northwest of "A" and "B", and one small response was detected near the Pay Role shaft and drill hole B-1. Unfortunately, B-1 could have overdrilled this conductor.

According to Dave Smith, even the weaker EM responses can be meaningful. In Wisconsin one company found ore on the EM anomaly originally rated twenty-third in priority. Thus, unless we intersect ore on the first hole, a variety of the indicated conductors should be drilled before the project is abandoned.

The EM report and map to accompany this report will be forwarded when received.

CONCLUSIONS AND RECOMMENDATIONS

The schists of the Bromide Project area represent the ideal host environment for the formation of a volcanogenic copper deposit. Some stratabound copper is visible on the surface, but far more visible copper is evident in our recent drill holes. Although assay values were only in the geochemical range, the holes penetrated approximately 1500 feet of disseminated, footwall-type mineralization. This alone would justify additional work in the project area which still contains a lot of room for ore bodies. The EM results were a very pleasant surprise and make further drilling even more of a must.

All the land with potential is finally under USB control. To adequately test the area, at least 5000 feet of drilling is recommended in 1978. The initial hole should test the "A-B" EM conductor in the altered ashflow. The remaining 5 to 7 holes should be located on a one hole-at-a-time basis, using data gained in preceding holes. Prior to drilling, geology and the EM data will be reviewed

with Dave Smith, so that the angle and placement of the holes will test his conductors at the point of their maximum potential.

- 16 -

APPENDIX

- 1.) Drill Hole Summary Sheet Drill Hole B-1
- 2.) Diamond Drill Field Log Drill Hole B-1
- 3.) Drill Hole Summary Sheet Drill Hole B-2
- 4.) Diamond Drill Field Log Drill Hole B-2
- 5.) Spectrographic Analyses
- 6.) Daily Shift Summaries and Shift Reports (Tucson file only)

DRILL HOLE SUMMARY SHEET

Hole no.	3-1				•			Total (depth	830 f	eet
Contracto CO1	nors Drill	ing Ind	Date ∞r	nplete	June	9,	1977	Total f	oolage_	794.4	(95.7% F
MATERIALS &	SERVICES			TI	ME DI	STR	IBUTIO	N Hrs.	Charge	@ 40/hr	Non-Charge
Hammer: 62'@6.	50/ft.		03.00	_	lling						135
Core: 407.6'NX	12.65/ft.	519	56.14			-up &	tear	down	2	3	
Core: 330'NX@13			55.00		pp ing						5
69 Hours @ 40/			50.00		and by *	}				2	· 34
1 mon.Compress			00.00		pairs				ļ		40
Water truck Re			53.53		of core						
Water Driver			95.00		hing						
Materials + 10			1.60		sing & C			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1		
& Mobilization			0.00				s(dela	ay)*		2	11
Compressor N	lob		19.28		ndition					7	
g U-Haul&Gener	ator Kental	48	30.18		sc. delay		<u> </u>				8
	d	120 04	7 77		xing				2	0	1
	Est Cost / f	18,06	21.76	To		zatı	on		-	9	46
DOTABLE							· · · · · ·				270
ROTARY I	-001AGE To	COF	(E. F(From	10(To	AGE Re	cov.	Size	Casing s	CAS	Size	Cosing pulled
4" HQ O	8 ft		70	7		7		10'(·	n-ho	
4" HQ 8	70 ft		77	12			NXC	70'(e-NO CH
7 11%	10 10	NX	129	83		38.3		10	LCTO	111 110.	C 20 011
		1 1122	120			,,,,				 	
										 	
DIRECT COS	T BREAKDO	ΝN					MATE	RIALS	BRE	AKDOV	/N
Item	Contractor	Operator	Cos	/it	Quanti	t y	T	Iti	em		Imount
Footage 22.	4'-(\$283)	10014					4" c:	asing			57.20
Cosing		1	20 0					ore by		.40	92.40
Mud & additives		1080.	50 1	.30	245	ga	1 sol	uble d	oil@l	.87	458.1
Bits		0		0				sel @0			52.4
Misc. Moterials + 10%		223.	. 90 D	<u>. 27</u>				uik-Ti			208.50
Drilling (Hrl					7			-Gel @		3	34.5
Casing, V/OC (Hrl		600.	00 0	.72	ľ			6 @ 20	0.07		20.0
Cementing,WOC (Hrl					1		Kwik-				21.58
Moving (Hrl			og 1				Gelf				19.0
Misc. Deloys * (Hrl Condition Hole (Hrl			od 1				I DUA U.		@ FC	27	56.2
			0 <u>00</u>					-Foam		• < 1	116.54
Misc. Services (H ₂ 0 Contractor Services	nt. (Agr.)	490	og o	.00				et @ 4 nent ©		3	93.40
	-0.7	222	77 0	60			+	ice ch			
Equipment Rent Mob & Comp. Mo		2233.)		i <u>ce cr</u> iding			118.58
EQUIPMENT		1 1177	ca +	روو		TIM		FOOT			
Rig: Wesdrill N	Indel 60			{	From			То		Aver. ft.	
Drillers: Jerry Day	ris(Foreman	&Garv	Coon	er	From			To ·		Aver. ft.	
Collors:	LU(LUICHAII)	· waary	COOP	 -	From			To		Aver. ft.	
Drill pipe:	•										
Compressors:					LST	. ON	-6011	OM PI	INEIF	RATIO	N RATE
Pumps:			•		From 8	-83	01 (822	21/13.	5)	ft/iohr	shift 60.8
Bits:	*				From		8	To 70(6	21/14		4.4
							01(760	01/12]	hr)	ft./hr.	6.3
					From 8	-83	0 '(822	21/135	hr)	ft./hr.	
							_	Æ PE	_		
					From 8	-830	o'(822	2725.	5)	ft./ioh	r.shift32.2
			-		From			To		ft./hr.	
					Froma_	830	1 (822)	1/255	hr)	ft./hr	3 2

'≱ছ ⁴ ⊁क-^इस		XP	Footo	RA	TIO	DLE Bee	SU		LIMINARY	DRILL LO		Lo Da Da	operty BROMIDE PROJECT Hole No cation Rio Arriba Co., New Mexical Detection Started $S-8-77$ Collar Enterty Completed $6-9-77$ Incl. 8 Engged By $B.E.FRENCH$ Core S	epth <u>830 fe</u> Elevation <u>± 97</u> -55 Bearing <u>N</u> 4	700
Foot	a g e	Int.	Rec.		Alfer	ation*	-		Mineraliz	ation	Graph	ic Log	General Description	Assays	
From	То		%	Mgn	CaCOs			T.S.	Ore Min.	Gangue	Ft.		Rock Type, Structure, Etc.		
10	20	10		2-3						lim/pyrite flooding schist and on fractures	10	No RETURNS See Core	SET SURFACE PIPE AND HAMMER DRILLED TO TO FEET Meta-andesite: oxidized chlorite-seriule schist. Coarse fragments.		
20	30	10		2						Same	20	и	Same		
30	40	10		3-4						same with some diss.	30 -	и	Same, but coarse fraction all fine.		
40	50	10		3			*	0		lim/py flooding	40 -	ı,	Same, all fines, plus 10-15% buil guartz Fragments - barren.		

Foot	age	Int.	الينا.		Altera	tion *			Mineraliza	ation	Gra	Logy	General Description		V.	Ass	ays	(ppr	n)
From	То		%	Magn.	Cal			T. S.	Ore Min.	Gangue	Ft.	Incl 55° &	Rock Type, Structure, Etc.	No.	Cu	Pb	Zn		
50	60	10		3						lim/py Flooding	1111111	See Core board	Meta-andesite; oxidized chlorite-sencite schist. Coanse fraction - all fine.						
				3-4						Same	60=	11	Same						_
70	7,05	1.59	100	d	3 -		-			Stringers -	70=		FAULT T.D. FOR HAMMER, SET CASING TO CORE - TO						
71.5			100	7		· Parta Oxi	lized	0-12	no ox. Cu	of diss Py, pyr, on Chalcopy.	->-	788 は ソ ル ル マ イ イ イ イ イ イ イ イ イ イ イ イ イ イ イ イ イ	NETO FOR HAMMER, SET CASING TO CORE TO LOST CIRCULATION, CEMENTED: POSSIBLE FAULT PROPERTY OF COMPANY OXIDIZED CHOTHE- Sericite schist with minor gtz eyes and common 77	/	220	15	75	<.02	<.2
77	77	<u> 5.5</u>	100	4	3		(T	One 34x/8" lense of pyrhahte at 71" Stringers	677 -	- 04-	with minor gtz eyes and common 77 stringers and lenses of Ca Coz. Abund. magnetite as dust and some larger specks. Sometimes associated with. Sulfide. Schististya 35 to core. It nevertical	4					
			61. A						Completely oxidized	of diss. lim/ pyorpyr. and lim/py coating fractures.	90 _	Mag V	Reta-andesite and andesite porphyry with several small intervals of probable andesitic applicances: completely oxidized chlorite-service schist with minor stretched pebble schist. Carbonate still abundant in streaks, but stained with limonite, not	2	270	10	150	"	"
97	47		8'lost,									V	white and pink as in 70-77. Magnette still abundant. Lim/py diss along	_					
,,			ב נונו								100-	Ma V	foliation and staining tractures. 78- Agglomeratic unit with coarse pebbles at basal contact (78') and finer stretched pebbles downwards. Indicate that NE is stratig. up + SW stratig. down		255	10	140	M	0.2
108	108	1/_	41/0 s			-							Meta-andesite: oxidized	1_					
									Trace ox. Lu _along schistor		110	V Nag	Meta-agglomerate	4	630	10	110	,,	<.2

•

2 17

Foot	age	Int	B-4.	Alteration *		Mineraliza	tion	Gra	Log	General Description	n ·			A 8 5	ays	(FPI	77)
From	То		%		T.S.	Ore Min.	Gangue	Ft.	DID	Rock Type, Structure,	Etc.	No.	Cu	Pb		Au	
	125		35					1	<i>//</i>	Meta-aggiomorate		4	630	10	110	<.02	۷.,
125		n.A.	<u> 23</u> 0			Ox. to rimming Small lease of lim/s=18//schs.	it	/30 =	Ma 75	Meta-andesite 'SW							
									80 Ma	'SW		5	95	10	120	"	*
	139.7																
139.7	14/	1.3	100					140 -	AAVA A	Meta-andesite: green speckled	140-			Т			
145	145	4	100			Trace ox. Cu along Calcute scam	Blue on de Costing Fractures		Ma 7	WE		6	60	20	110	"	"
						Elband of diss.		150	6 3 8 ES	Meta-agglomerate sw - Mafic sill							
	153	2	100					=	ಚ	Sw		7	250	15	130	"	•
153	155	2	100.]]	Ma &	Meta-andesite							
/25				H			3"Chert cobble-	160	V M	Meta-agglomerate	158-	-					i,
	164.5	9.5	100			part, oxidered traces of PY/PY' Z	trace cpy		v			8	265	10	110	"	"
164.5									Ma	Meta-andesite							
1685	162.5	4	100			0.5-1.0%		170	1804	grad contact Meta-agglomerate	168_						_
						0.5-1.0% 1/2 diss. Not. Cu			7	NE SW		9	250	5	125	, ,	"
						01-0.5% 3/2 diss. Nat. Lu tucelly cooling magn. xls. t assoc. with mag	seed by		Mag	200	177'-						
							n. Concentrations	130	20	·	181 -	10	145	10	85	"	0.2
	187	18.5	100			4" welly diss Nat. Cu O.1% 1" Same		-5	Ma to	— ½*FAULT SW		11	240	10	115	,	4.2
187						Part. oxid.	еру —	190	Ma.	Meta-andesite Sw 2" possible Mota-sediment(Ms)		12	185	10	115	,,	0.2

Shoot 3 -4 /3

-	age	Int	-	Allel	ation *		Mineraliz	atian	Grapme Log	General Description			Ass	ays	(ppi	n)
Frem	То		%			T. S.	Ore Min.	Gangue	Ft.	Rock Type, Structure, Etc.	No.	Cu	Y	Zn		1
	193	6					frac of	swifide speaks.	Ma Ma	80 sw Meta-andesite						
193	773	1.8	100				tours Nat Cu	epidate incre		Meta-sediment ! senate schist	-					
194.8			700		-		trace Nat. Cu		ST S	80 FW	- 12	185	10	115	4.02	0.
									Mag	Meta-agglomerate						
199	197	4.2	100							199"						1
			1 1						200 - Ma	Sw Meta-ashflow? gtz-poor 199						
263	202	4	100	-							13	110	_	0-		1
703									1 1 1 1 1 1 1	10 SW Meta-agglomerate	13	110	5	85	"	۷,
	207.5	4.5	100				1		4 4 4 4							
207.5							Brown specks -	2.30	210	"Millrock" breccia grading downward (up stratig.) to a tuff-like rock with siliciped or cherty clasts	1					
	212	4.5					SILVERIONI = -3	24214	210 -	a tuff-like rock with silicified or cherty clasts	14	75	5	90	"	1,
2/2		0.8								-2"Magglom, Meta-candes, te: green-spected 212"	-					-
212.8								2" gtz cabble	e 100	1/2 Ph. ULT	-					
•			1					I"gtz(bul)-		Meta-agglomerate						1
										20 34	15	205	5	140	44	١,
									220 - Man		1					
				1			Diss. cpy in Mag		Mag							
							con withou . Cur acound it	2		222						
			1				alorno it -	Ť		IS SW						
227.5	227.5	14.7	100	-								100	_			
	230.5	3	10.						Map.	Meta-parphyritic andeste	- 16	175	5	110	"	0.
230.5											-					
	234.2	3.7	100						Mag	80 SW Metaragglomerate 232	+	-	-			-
234.2	235.7	1.5	100						1 1/1/2	80 40 Meta-sediments (on Fine Mag)	-	Ī				
235.7								Fes (No Cu) =	10		-					
			1						240 - Map	Meta-porph. andesite	17	190	10	105	"	4.
	241.	61	100						240- 10							
	243	1.2	100				on Calcite stru		Mati	DEW Meta-setiments 242	4					
243										Checker and low land a						
								Mrcubble? -	3 3	≥ su	J.					
0./2.7	248.3	5.3	100								18	245	5	130	"	0.
248.3	251	2.7	/00						250 - Map 1	Meta-porp, andesite						
251	£21	19.1	700					-		grad, contact 251	-	-				-
									Mag							
									- A-4	so sw FAULT in Mag						
Į l									5094	10 - 10 L	19	230	5	120	"	4.
	I	- 1					1	large py Ns	260 = Mag	B.	1 ' '	7.0-	V .	1,20		1

			0							1							_			
Foot	100	In	kec.	Α	lterat	lon *	r		Mineraliz	ation	Grapm	c Log	General Description			9	Ass	ays	(ppm)
From	То		%		chl.			T.S.	Ore Min.	Gangue	Ft.		Rock Type, Structure, Etc.		No.	Cu	Pb	Zn	Au	19
	261.5	10.5	100						WK. FIRCKS CAY	sealed py x/s	-	o Made	Meteragylomarate - part oxid funingles.							
261.5	263	1.5	100						MOSTLY 4	VOKIDIZED FR	ERET	Ma	Meta-andesite							
263									V	0.5-1.0% diss	- "	20 70	Sw Meta-agglomorate		20	145	10	85	107	, 2
	267	4	100				1			Py-pyr		Mag	Sw 16/16 toggrammatic		20	//3	10	85	4.02	4.4
267	269.7	2.7	100		4				wkly diss. cpy -	py-pyr	\exists	" Ma" 75	Meta-andosite: Ene-grained							
269.7	7	2.1	700			1				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	270 -	-pre-15-794		10	_	-		-		
										zinc-like oxide		Mag 75	Meta-agglomerate	,,						
					3-4	'		,	same	cuntite oxide		AAA	->"Millrock"		٠,	155	15	80		"
												7			21	755	/5	00	"	"
	278,5	8.8	100								1	1/19 75		78'						
278.5	281	2.5	100						same		280-	· Ma	Meta-andesite: Ene-grained, darkgreen, chlo	70						
281		7,5	720	- 1		_	+	-	5	-	700	1-14								
											1		Meta-agglomeratic andesite, dark gre	. 1						
											=	l. i.		Iontic	22	210	10	110	.,	"
					.						1 5	1								
										1	1 -	Ma 75	SW							
			- 1								290-	1		190'	_					
			1								1 1	1. 1								
									same			34A44 -	- Small FAULT, reverses schistosity							
			- 1						Jane		-				23	185	10	105		"
											1 3	•			~-			,,,,		
			1							,	3									
											300-	Ma 3	Sw	300'+		-				
									. (1		1 3									
1								ì	and to	4-				i						
			.						cpy diss in che		1	0	- chert cobbles with cpy	1	24	155	5	95	"	"
	308.5	27.5	100								1 7								1	
308.5											310 -	1,19	Meta-andesite: swirly, fine-grained, green	310'-						
1	3/3	110	4.0						Same		-	-Ma-		3.0						
3/3	3/3	7.3	100				-	-			+ -	73	NE Contact							
3,3											=	* 180	NE Meta-agglomeratic andesite	.	25	185	5	120	,,	"
													Tetu- aggiomeranz consessio	1	72	185	٦	120		
			:								1	•	NE	1						
											320-			320'-		_			-	
											-	Ma 75	<i>Σ</i> ω	1						
									slightly more	/	-									
									cpy diss stran	51.75					26	235	5	125	. "	"
											-									
											330 -	- 75	3W	330'-						
						_				-	220-			0 30 -		-			_	-

E 17

Footag	a e	lor.	Rec.		lter	ratlo	n #		Mineraliz	ation	Toro	Tag I	Consent Personalistics		_		-		,	_
From		1101.	%		1101	4110	<u>''</u>	7.0	T		Grapmo	Log	General Description	}-				ays		
FIGH	10		76	_	-			T. S	-	Gangue	Ft.		Rock Type, Structure, Etc.	<u> </u>	No.	Cu	Pb	Zn	Au	Ag
									weakly diss cpy -	PY - Pyr		75 5w.	Meta-agglomeratic andesire		27	230	10	75	4.02	4,2
					,			1		,		• 75 SW		350'-	28	255	5	100	"	"
•											360	75 Sw	"budgets. very, near vertical, N95E 3	160'	29	260	5	105	~	"
									Note 260-215: 115 WK. Epy		3% -	Ma sw		370'-	30	215	5	160	"	"
374.5	74.5 80.5	61.5	100						115 wk. epy Very little suifide, if any		380	Mag Z	Meta-agglomerate FAULT	3¢o'-	31	200	5	100	"	"
385.3	8 5 .3	4.8	100						5ame	Fe-stamed cale,] [Ма	Meta-andosile		32	275	5-	125	,,	0.2
563.5									same		3%		Meta-agg/omerate	890'		~ /~				
											400	(1.09)		400'-	33	265	10	125	"	4.2

Foot	age	Inc	ec.	A	lter	atlo	n #r		Mineraliza	ation	Gra	Log	General	Description			Ass	ays	1001	,,)
From	То		%					T. S	Ore Min.	Gangue	Ft.			Structure, Etc.	4/	0				_
							\top		very little sulfide		1 3	Mag	Meta-agglomerate		No.	Cu	Po	Zn	AH	17
406	406	20.7	100			4		1			1				34	225	5	115	<.02	۷.
					Ì						410		Meta-andesite	410'-						
1											=======================================				35	220	5	105		,,
									very little sulfide		420	 ; •	·	420'-				,00		
									sumae		1111				7/.	205	_			
											430-	Ma			36	205	5	120	"	"
														430'-						
											440			440' =	37	275	5	120	~	~
									Sulfider picking-up						38	175	5	110	,,	~
	<i>453.</i> 7	47.7							74"band of 5-84 cpy // schist 74-1"band of 8-,	6% pvr-cov-	450 -	*****		450'-						
453.7	456	2.3	100						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-	Mag			39	810	5	110	"	"
456	468		100								1 -	Ma	FAULT	456' =						
458	461	2	100						+mice cpy -		160	o Magne			7					
461										course diss. p			Meta-agglomerat	k	40	315	5	110		"
			1								470	Mag		476'-						

-		. 1	N. T		*	1						_		-			
Foot		Inc	ec.	Alteration	-	-	Mineraliza	ation .	Grapmo	Log	General Description			As:	says	(ppm	,)
From	То		%			T.S.	Ore Min.	Gangue	Ft.		Rock Type, Structure, Etc.	No.	Cu	Pb	Zn	Au	Ag
	474	13	(0.0						3	Mag							
474	7/7	./3	700		-		10 10.1		+ 3	NEW Y	Material	-					1
	478	4	100			1 1	no sulfides		1 3	·Ma:	Meta-andesite: green-speckled, chloritic	41	205	5	150	<.02	1.2
478	172		700				_		+ 3			-					
									480	10	480'	+					
	484	//			-				3	Mag							
	484.5	6 1945	100						+ 3	:Ma	Make andreste some control 1 11 5	-					
	487	1.5	100							M	Meta-andesite: green-sackted, chlorine Meta-andomerate (andesitic)	42	220	10	120	"	"
487	489.5	2.5	100						\top 3	·Ma:	Meta-andesite: green-speakled, chloritic						
4895									490 -		Mala 1 490	-	-				
											Meta-agglomerate (andesitie): stretched pebble agglom. in chloritic schist matrix.						
İ							weakly diss.	Later	7-7-		matrix						
					A.	1	, , , ,	·	1 7			43	215	5	100	~	"
									7								
							\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		500 -		NE 500						
									1 7	3	WE						
	١. ١						1 1 -1 - 1		,	V							
							Oscattered _			0	Bull gre cobbles or veins with chlonie class	44	420	5	100	"	0.2
						}	blebs of epy		F	Mag							
							Flecks of Nath	c	510	(D) 75	510'		<u> </u>				
							Wy diss. flecks			0							
							Not. Cu			75	3ω 3ω						
							WKly diss Nathan	-		9 60	SW	45	185	5	135	"	1.2
							m benoxid rock		F(•							
							Strong Ylecks - Native Cu on Fr	uc.	52d	# 0406	520						
							1-5% cpy-		->					T			
							Nat.Cu -			2	5w						
							The state of the s		=			46	210	5	115	"	,,
									1 =	0 1							
									530-	44	FAULT - Chlorite matrix 530	,					
							Nat. Ca 531-31.5 -		+ =	6 8 8	sw Meta-agglomerate: same as above	_					
							part.oxid.		+ 1		uggiomerase: same as a bove						
							diss cpys		1 3	Mag		47	23	10	130	,,	
	A. C.						Nat. Cu		1			''			, , ,		
	340	50,5							-	-10		-					

Foot	oge	In.	Wec.	A	Alter	atlor	*		Mineraliza	ation	Gracimo	Log	General	Description			Ass	ays	(ppm	,)
From	То	ft.	%	Maga C	ec 0	4/or. 3	Ser.	T.S.	Ore Min.	Gangue	Ft.		Rock Type,	Structure, Etc.	No.	Cu	Pb		Au	
	544	4	100	2-3		4			CPY, week to nil last 1/2' has common Nat. Cu			Ma		ed, chloritic, partly oxidized	4.0					
545	546.5	1.5	100	.3							Map-	73	2546.5 Intersection with	downward projection of.	the A	ex Pa	6 5%	541		
546 .5			100	3	3	3-4			Cpy, 0-0.7 (usually 0.05-0.1), Native Cu flecks in oxidized zones	XIIme magn. 2-3% diss.	_		Meta-ashflow: p chloritic schist feldspathics pun Also scattered	ossible Mr-2, Matrix with inclusions of nice? of minor gtz.egos. In thic fragments.		260	20			**
										,	570	e e	ME.	570'-	50	165	10	115		,,
	5797	33.2	120						Weakly diss native Cu 0.05-01%				*SW		51	305	5	120	,,	"
585	585	5.3	100						Sulfides mill but Nation were exided Extremely spense to mill Fleck of bornite in schist on from	every week flashs	590	Ma: V	Meta-andesite: dar bio-ser-chl schist gradational contact Meta-agglomente, w chloritic		. 52	255	15	150	,,	
598.3	543	5.3	100						W. flecks of Native Com- Hard to see self. But still very sparse flecks Nat. Cu were oxidized.		2	Map &	Meta-porphyntic a		53	165	5	115	~	
601	601								No sulf on Nat. Cu		600-	Mag Mag	Meta-andesite Meta-andesite Meta-andesite	600'=						
	610.5								Specks Nat. Tu		615	Made Made	Meta-agglom.	610'_	54	195	5	110	"	"

		-									<u> </u>							_			
Foot	age	ln.	rec.	Al	teration '	*	1	Mineraliz	ation	Grapm	c Log		General	Description				Ass	ays	(ррт)
From	То		%				T. S	Ore Min.	Gangue	Ft.		Ro	ck Type,	Structure, E	tc.	No.	Cu	Pb	Zn	Au	3
610.5								Scattered, very weather diss bornite	Epid. increasing	-	Mape	Meta-porphyni	he andosite!	chlorite decreesing,	apidote						
613	6/3		100	-					diss. garnet?	Ma-3	10	Contact 57°				+					
613.6	613.6	0.6	(00			-		"	wk diss. gamet	1	· ~ 55	SW			·	55	190	5	105	4.02	4.2
9,2,6									2113.94112	1 3	01	Meta-porph	h. andesite (agglomeratic)				7			
									epid. increasing chilor, decreasing	620	Ment		•		620'-						
								Frac. with flecks_	chior, accress	-	Map 25	<i>Σω</i>									
								Frac. with Flecks. of Not. Cu	-	-3	1000	See		•							
								Very minor bornite	epid.	1	100			•		56	285	5	130	"	"
	629	150	420					Slightly more " - Hardly any sulfi-			10	2" bund of	Mag								
629	901	13.7	700					629.1 - 635: 4		630-	0 - 5	- Meta-ag	glomerate			-			-	-	-
								11% Nat. Cu dis			76	1				57	305	10	110	"	"
								with cuprite		1-1	2 bo Y5	SW Meta-	orphyri	he andesite	633'-				4.0.0		
								,5 1 /6 "		1 =	Map				636'-	58	140	15	125	"	"
										=	. 1				-						
6A.	641.5	12.5	/44					Traces of timy diss. Nat. Cut	'	640 -	1.10					59	105	20	105	"	"
641.5		72.5	700					cpy some born		1 3		11	1 . 4	. H. Lad a 11/a							
								2.1%	1]	70	SW Metz 499	1/omerale	with cherty cobbles							
								1	1]	Mag					60	150	20	115	"	"
								'								-					
1								Frac. with diss)	650 -					650-	-					
								bormte		-	a 70	3W									
									1	1 4						61	205	15	120		
							1	•	1	1 4							203	/3	120	"	"
					1		'	Same as		1, =	0.0		-				1				
								a bave	1	660 -					660'-						
									1	-											
		0						66.1' cpy on	1	1 7	7 0		٠.			10	170		110		
		1						frac		-	28 9 8					62	170	15	110	"	"
										1 3	0	560								1	
										670 -	· M				676'		-				
								Cu greatly due	nished	- 3 =	149	5ω									
								Very, very were	k (7 7	•					63	155		100	,,	,,
								they diss No	1-2-4	=	12 74 6						,53	15	1,00	1	
								CIL		100	09				100						
							_			680-	11				680'.			-	-		-

pope of a

01 - 10 -

Footage	Int.	leć.	AI	terat	ion *		Mine	ralization	Gra	c Log		General	Descriptio	n			Δ 8 3	says	(000	,)
Fro To	1	%				T. S		1	ngue Ft.		R		Structure,		1/	1	$\overline{}$	_		Т
641.5 758							Cu much	less		S. M.	Same	, , , , , ,	S Tracture,	210.	No.	185		Zn 95		A
							189,5 No.	at. lu sus frau s. borns te	c. = 690	05	ω			690' -		700		,,,		_
							Cu nil		}	70 -	5ω)				65	176	15	115	,,	
							Diss. Na & borni & cpy i	t.Cu te boally Z	700-					700'-	66	220	15	105		
							Cu ver	ysparse	710 -	Mag				710'-	67	. 125	15	95	"	
							725.4'0 =peck 728.2' +28.5'	ne tory Natle	720-	55 70 :	- 3"FAL	ILT	·	726'-	68	100	15	90	,,	
								except ted	750-	Mag	′ςω			730'	69	65	10	90		
									740-	Y	?รω			740'-						
							748.2': 4	py ontac-	750-						70	60	10	8.5		

T.S. Ore Min. Gangue Ft. Rock Type, Structure, Etc. No. Cu Pb Zn Au (41.5) (41.5) (54.5) (758) (760)	Footage	Int.	Rec.	Alteration *	Mineralization	Graphic Log	General Description		-	Δ 8 9	SOVS	Coon	,)
11 50 5 70 6.02 TEST 165 100	rom To		%					11	10			1	
788 (16.5) 100 788 (16.5) 100								No.	Lu	Po	Zh	Аи	19
12.5 76 1.5 100 12.6 1.5 100	758 758	116.5	100					71	30	5	70	<.02	4.2
768 4 100 770- 788 1 788 2 100 788 2 100 788 3 100					V	760							
75 120 5 90 " Traces of diss. Cpy 780 780 780 780 780 780 780 78	768					Ms	Meta-sediment	72	10	5	75	"	"
780- 780- 780- 780- 780- 780- 780- 780-	768					770	Meta-agglomerate	77	17.		0		
788! 2" band of ore grade" 788-89: partially exidized with some Gpy? 78 5 - 89: No ex. Lu or Nat: Cu in exidized with some Gpy? 78 6 - 89: partially exidized with some Gpy? 78 6 - 80: 0.05 78 79 78 79 79 79 79 79 79 79 79 79 79 79 79 79	-				Traces of diss. cpy	-\ Mag	778 -	/5	120	3	70		
76 135 5 95 <.02 800 77 215 5 115 " 810 810 810					mag/	790		74	215	5	70	*	~
800- 800- 77 215 5 115 ". 810- 810- 810'- 810'-					" ore grade" diss. cpy	790	788' 788-89: partially oxidized with some cpy? No ox. Cu or Nat. Cu in oxid. zone 789"	16	6000		6.5	0.03	0,
77 215 5 115 " 810 Mag 810' 810'								76	135	5	95	<.02	4.2
810 Mag 810' 810'						800-	800'-				-		_
314.3': traces					-			77	215	5	115	"	"
78 180 5 115 "					21/2 4	810 Mag	810'-						
					of cpy			78	180	5	115	.,,	

Foota	ge	Int.	Rec.	Alterati	on *		Mineraliza	ition	Gram	c Log	General Description Assays (ppm)
From	То		%			T.S.	Ore Min.	Gangue	Ft.		Rock Type, Structure, Etc. No. Cu Pb Zn Au
							oxidized		111111	Mag	Meta-agglomerate. 79 140 5 85 4.02 2
	330	62	100						- 070		Total Septil
	7.0.							A	830		TOTAL DEPTH

DRULL HOLE SHMMARY SHEET

Date storted June 9, 1977 Total depth 1299 feet

2.3

B-2

Hole no.__

Contractor Connors Drilling, Incite completed July 26, 1977 Total footage 1278 (98.4% Rec) TIME DISTRIBUTION Hrs. Charge 40/hr Non-Charge 40/hr. | 44/hr MATERIALS & SERVICES Hammer: 56' @ 6.50/ft. Drilling 36 1.2 364.00 Core footage-see below**
48.5 hrs @40/hr 18604.65 Move & Set-up 22 26 1940.00 Tri; ing 121 hrs @ 44/hr * 149 3 5324.00 Stand by 6 1200.00 mon. Compressor Rental 70 Repairs later Trk Rental & Mileag 1169.74 Spot core Water Driver & Water 403.50 Fishing Cosing & Cosing WOC 10 3 Materials +1.% SC 3779.50 * 33 Water delay Mobilization 750.00 6 7 30 Condition Hole Compressor Mob 4.1.28 U-Haul & Generator Rental Misc. delays 480.1 125.00 Mixing Mud * 10.5 26 Site Treparation •34589.96 Stuck rods Total \$ 420 48.5 121 46 Est. Cost /ft. 26.63 Total CASING ROTARY FOOTAGE CORE FOOTAGE Casing pulled Size Cosing set Size Size From To Size From Recav. 6211 411 10'(left-in-ho 101 66 12 19 1212 0 NX 651 651 4"H7 661 NC 10 DIRECT COST BREAKDOWN MATERIALS BREAKDOWN Amount Quantity ltem Contractor Operator Item 14.50 4" Casing 57.20 18968.65 161 1214.65 10 Foolage 61" Tricone rock bit Cosing & bit 225.21 168.00 0.1 1 Mud& additives NXcore boxes @ 1.40 168.00 3063.2. 2.3 120 soluble oil @ 1.87 81.75 Bits 525 (a) Misc. Moteriols& water diesel @ 0.3885 445.5 0.34 351 136.37 Ha! cans Condet @ 46.70 373.60 Drilling (Hrly.) Cosing, WOC (Hrly.) 58.27 532.0 1 can Quik-Form 0.4 Cementing, WOC sacks Quik-Trol @ 6.95 (Hrly.) 229.35 33 (Hrly.) Moving 012.32 2024.00 1.56 8 11 Cellex @ 126.54 10872.0 11 Misc. Deloys * (Hrly.) Quik-Gel @ 4.93 45,30 13148.0 2. 10 Condition Hole 11 39.14 (Hrly.) 1560.00 CC-16@20.07&Ge1@19.07 11 112.46 Water Driver&site 0.19 Dextrid@56.23 251.0 preb. 0.25 22 box sTide soap @ 2.14 47.08 323.1: Contractor Services 10%SC Equip. Rental 2841.93 2.1 2 11 Soap @ 11.82 23.64 277.50 Mob& Comp. Mob (11086.6-1)1199.2 loas Water @ 7.50 0.92 ESTIMATED FOOTAGE / BIT EQUIPMENT USED Rig:Wesdrill Model 60 Aver. ft. From To Aver. ft. Drillers: Jerry Davis (Foreman) & Gary Coorer From To To Aver. ft. Cotlors: Drill pipe: EST. ON-BOTTOM PENETRATION RATE Compressors: From 10-1299 (1289 /21.8) ft/johr shift Pumps: ft./hr. Bits: From To From 10-1299 (1289 /218hr ft./hr. 5.9 ** CORE FOOTAGE BREAKD WN: ft./hr. 66'-23'()'lost-NC):230'NX@12.65=2074. 60 239-500'(7'lost-NC):254'NX@14.40=3657 6 EST. INCLUSIVE PENETRATION 500-1000' 500'NX @15.25 = 7625. From 10-1299'(1289'/57) ft /lobr Price Increase RATE f1. /lohr. shift 22.5 5247 45 1000-1299':299'NX @17.55= To

Tutal Funtage C st & 13,600 65 From 10-12441(12, 41/571, 5hr 4/hr

-	-	-	4		n n m	חחר	n V	-				1							-
n to An			LOF			3OR				DRILL L		1	perty <u>BROMIDE PROJECT</u> Hole N						
					НОІ		SURV				-	Lo	cation Rio Arriba Co., New Mexiotal D	eptl	1 1	299	FEE)		
			Foota	g e		Bearing	2	ìn	nctinotio	n		Da	te Started <u>6-9-77</u> Collar	Ele	vati	on 4	prox	c. 973	7
				-			 -						te Completed <u>7-26-77</u> Incl. &				أبر	IIOE	:
				-			- .	4				Lo	gged By <u>B.E.FRENCH</u> Core S	Size	_//	<u> </u>		-	_
Foot	age	Int.	Rec.	- А	lferot	ion*		MI	neroliz	otion	Graphi	c Log	General Description			Assay	/3 (F	opm)	_
From	То		%				1. 5	Ore	Min.	Gonque	Ft.		Rock Type, Structure, Etc.	No.	Cu	РЬ	Zn	Au	Ą
0								r.			, 1111		SET SURFACE PIPE AND HAMMER DRILLED TO 66!						
	10	10																	
10											,	see core board	Oxidized chloritical sericitic schist. Probably mela-andesite or agglomerate Minor limonite after pyrite.						
20	20	10									20-		Same						
30	30	10							10		30-		Same						
													same.						
40	40	10									40		Same.			4			
	50	10									50								

* Alteration Cumbols' Inwast ' 2-maderate

Foot	age	Int.	166.	Alteration *		Mineraliza	ition	Grapmic	Log	General Description		0	Ass	ays	(ppm	
Fram	То		%		T.S.	Ore Min.	Gangue	Ft.	dl	Rock Type, Structure, Etc.	No	Cu			Au	
50								111111		Sericitic schist. Possible mela-sediment						
	60	10						60-						1		
60								=		Same, more chlorite						
66	66	6	+					+ 1	75	SW START NX CORE	-		_			
								70 -		Meta-agglomerate with thin interlayers of andesitic material Magnetite common to about a strandard		165	5	120	Z.02	2.2
•					i	79.3 trace Nati Cu in try spe 1.2 diss. Nat. C. 81.5 "	ets =	80	Mag	Magnetite common to abundant downwards, unless otherwise noted (see p.11, 727-730). sw	2	170	5	105	,,	"
93	93	27	100			trace ox. lu =		90	Mag	- FAULT & Bull gtz. vein -2" clay gouge - FAULT	3	205	5	100	21	,,
								111	Ma	Meta-andesite: 95.5	-	-				-
100	1.0		10					100=		Stal -1/		200	10		,,	,,
103	103	3	100					+ 1	Mag	Metagglomerate:	4	700	10	110		
	1895	4.5	Int					110	Mat	Meta-ashflows 105.5	5	150	5	85	"	,
1/2.5								1	Mag	-2"FAULT 115.5	+	738	3	23		
						118.5 Diss. Nat.		120	Mare	- Chlorite vein	6	500	p.3			

.

1 1000		Alteration *	Minero	ilization	Grand Log	General Description		-	Ass	gys	(ppr	1)
	%		T.S. Ore Mir	n. Gangue	Ft.	Rock Type, Structure, Etc.	No.	Cu	РЬ	Zn		
	100		F.W E. /		Mag Maf	Meta-ash flow	6	205	5	110		
						Meta-andes, te 126'.						
	0.0		7447.64		Ma	136'	7	210	5	145	н	۷.2
1.3	100				140 Ma	Meta-andesite Meta-agglomerate: tuffaceous	8	280	5	130	,,	"
			Nat.Cu	of	150 Mago	ζ _α Sω	9	340	5	130		"
5 14.2	.,,,				160 - Ma	Meta-andesite: black, partially to completely siliceous.	10	250	5	120	"	"
8.5	90					166						
3 2.3	100				170 - Mag.	Meka-agglomerate_		300	5	110	"	0.2
			oxid zones	corner readily	3 - Ma	FAULT, , 3' Mckrandesite: black, siliceon	s 12	500	_5	125	"	"
			Ox. Cu inschi	st-	Ma	Meta-andesite	14			155 95		0.4
			(can't see	Sulfides)	180 - Mag	Meta-agglomerate: mostly fresh with oxid. fracs. Probably contains they weak, diss. cpy — but can't see it only Nat. Cu in oxid. areas.	15	295	5	125	"	0.2
	3.5 3.5 3.3 2.7 1.6	14 99	14.2 100 3.5 100 1 100 1 100 3.5 100 3.2 100 3.2 100 1.6 100	7.5. Ore Min 2.5 100 2.5 100 3.6 100 3.6 100 3.6 100 3.6 100 3.7 100 3.7 100 3.7 100 3.8 100 3.9 100 3.9 100 3.1 100 3.1 100 3.1 100 3.2 100 3.3 100 3.3 100 3.3 100 3.3 100 3.4 100 3.5 100 3.5 100 3.7 100 3.7 100 3.7 100 3.8 100 4.4 20 3.8 100 3.8 100 4.4 20 3.8 100 3.8 100 4.4 20 4.4 20 4.4 20 4.5 100 4.6 100 4.7 100 4.7 100 4.8	7.5. Ore MIn. Gangue 7.5. 1.0 7.5. 100 7.5. 100 7.5. 100 8.5.	7. S. Ore Min. Gangue Ft. 7. S. Ore Min. Gangue	T.S. Ore MIN. Ganque Ft. The state of the s	T.S. Ore Min. Ganque Ft. Rock Type, Structure, Etc. No. 2.5 100 2.5 100 Semenal dia Not. Ca. prove sey 136 Not. Ca. prove sey 136 Not. Ca. 137 No. Not. Ca. 138 Not. Ca. 148 Not. Ca. 149 Not. Ca. 140 14 77 15 100 16 100 17 100 18 100	15. Ore Min. Genque Ft. Mag. Rock Type, Structure, Etc. No. Cu Pb 15. 100 2.5 000 Scapered dis. Not. Ca. post Note of the No. Ca. post No. post No. Ca. post	15. Ore Min. Ganque Ft. May Rock Type, Structure, Etc. No. Cu Pb Zn 15. 100 2.5 000 3.5 100	15.5 Ore Min. Ganque FI. 15.6 Ore Min. Ganque FI. 15.7 Ore Min. Ganque FI. 15.8 Ore Min. Ganq	

Foot	age	Int.	ec.	Alteration *		MII	neraliz	ation	Gram	Log	General Description				A 8 3	ays	(ppm	2
Fram	То		%		T. S	S. Ore	Min.	Gangue	Ft.	, Ala	Rock Type, Structure, E	tc.	No.	Cu		Zn		
						Spora	dic, we Not. E	k					16	295	5	120	∠.02	0.2
									200-	Mag		200'-	17	465	5	105	,,	,,
	4.2	34 1.2 1.8	100			215-216	': Net. C	peking-up	210 -	Ma Klage	SW Meta-andesite Meta-andesite	210'-	18	330	5	120	"	"
221		<u>5</u> _	<u>o</u> .			No Cu	or Salt	de	220	Mar	Mislatch-Core lost Meta-ashflow		X	NA	NA	NA 	NA 	NA
226.5	226.5	5.5	100						230-	Ma	Mela-andesite	230'-	. 19	180	5	110	"	<.;
34		_7.5	95_						-	V	Mislatch - core lost		20	190	5	110	"	
240 2125	241	7 1.5	100						246-	Ma	Meta-ashflowr Meta-andesite	247-			3	770		0.2
254	254	11.5	25_			Scattle of c,	red sm	blebs	250				21	300	5	120	4	۷.:
259	259	5	2%						260	Ms 80	Mislatch - core lost except for sumbled small fragments Meta-sediment, gnessic							_

Faota	90	Int	A.r.	Alter	atlan *		Mineraliza	tian	Gra	Log	General Description		0	Ass	ays (ppm)
From	То		%			T.S.	Ore Min.	Gangue	Ft.	AIR	Rock Type, Structure, Etc.	No.	Cu	РЬ	Zn	Au	A
									=		Meta-sediment, gneissic 262.6'-	22	50	5	36	4.02	۷.
							Very weakly disseminated - Native Cu "		270	Mą	271'-	23	185	5	95	*	,,
								6"Chert	1			24	145	5	105	,,	"
									280 -	0. 5	FAULT 281'-						-
287.5	287.5	28.5	99							Ms	" FAULT	25	155	5	53	"	"
207.3							Very weak disseminated native Cu in oxidized zo.		290 -	Ma	Meta-andesite, agglomeratic 291'						-
	300.7	a2 1					and very weak diss. bornite and cpy in un-		300	1 . 1	sω	26	170	5	50	"	"
300.7							No Cu			Map 1	Meta-porphyritic andesite 301.						
	306.5	2,5					No Cu	chlorite bull quarts	+ =		FAULT with chlorite and bull qtz.	27	80	5	100	"	"
309						1	No Cu		3/0 -		Meta-andesite, fine-grained, weakly 311 silic?	-					-
315	315		100				No Cu		† 3		Meta-agglomerate	28	350	5	95	,,	
3/7.6	318.6	1	100				k, tiny Nat.	Lu+Cpy	7 3	•	Meta-andesite						
318.6							No Cu	1	320 -	Mag	Meta-agglomerate 321	-					
							"			Mag		29	215	5	95	"	,,
	321.4	55.9	100						330	Ma		-					

Foot	age	Int.	nec.	Αl	terati	on *		Mineraliz	ation	Gramma	Log	General Description		U	Ass	ays ((ppm	1)
From			%				T.S.	Ore Min.	Gangue	Ft.	Dia	Rock Type, Structure, Etc.	No.	Cu	Pb	Zn	Au	Ag
329.4								Starting at:		11111	70	Meta-andesite with minor bull quartz veining sw	30	320	5	115	<.02	Z.2
								335.4, Comme disseminated Native Cu or			Ma	335.4'= 338'=	31	330	5	125	p	п
340.5	340.5	11.1	100	-				cpy in unoxidizones f.5-1?	zed)	340			32	325	5	105	n	0.2
	343	2.5	100	_				и		1 1	Mag	Meta-2, glomerate	33	250	5	115	"	4.2
3 43	347.5	4.5	100					"			Ma	Meta-andesite 343.2'*	T.II	27.		47.0		,
347.5		0						Weak dissemi Native Cu+b Cu nil to sporadi traces of Nata	rnite	350	Mag	Meta-agglomerate 351'-	34	270	5	/35	"	
353.5	351.5	.6	/00					traces of Nasm	re Cu	360	Ma.	Meta-andesite & and. porphyry	35	55	5	95	n	<i>p</i> 1
	364.5	1						Cu nol				361'-						
34.5 366.2	366.2	1.7	100		-			"		+ 3	Mag	Meta-agolomerate	36	170	5	125	,,	.,
366.2								Native Cu diss. on frac.		370-	•••	Meta-andesite 371'=						
								Cunil Native Cu diss on Frac.		380 —	Ma ••••		37	170	5	110	"	
							1	Weak traces disseminated Native Cu			Ma	Meta-azq lomerate	38	115	5	45	,,	,,,
								Cu nil		390 —	Ma (3	sw 391'-	39	150	5	90	,,	"

Foot	age	Int.	Rec.	Alte	ration #		Mineraliz	ation	Graphi	c Log	General Des	cription			A 83	avs	(ppn	2
From			%			T. S.		Gangue	Ft.	2	Rock Type, Str		-	Cu	РЬ	Zn		
									1	1	SW Meta-andesite	401'-	No.	Си	1 5	λn	Au	Ag
	40.5	35.8	100				Cu nil		1 4	Ma			1					
405							n n		410	Maa	Meta-agglomerate		40	100	5	95	4.02	4.2
							Sporadic, weak diss. Native Cu Cu nil		420	Mag	Green speckled met		41	160	5	125	n	13
									7	1129 55	s₩	421'-						
•							Very weak, sca	Tered	430 =				42	150	5	125	n	***
							Cunil		730			431'						
							very weak, scattered disseminate	ď	440	Mag	sw	- 441'.	43	170	5	125	n	**
							сру		450		gray, cherty pebbles	in Mag 451	44	190	5	130		,,
									=			73/*						
							Cu nil		460	Mag	Meta-agglomerate, but for grading to very fine do	ner clasts, and ownwards		185	5	130	Jı	,,,
	464	59	100				diss. CPY	d	=			461						
464		2.2					Cu nil		7 4	Ma	Green speckled meta-ande	site						
466.2		2.8					. 11			Ma	Meta-andesite: fine-grain	red, dark, lava?	46	160	5	100	n	11
469	-: F.1	218					minor Cpy @ 4	70.5'	470	Mag	Meta-agglomerate	470						

tage	Int. Res	Alter	ation #		Mineralizat	ion	Graphi	c Log	General	Description				Ass	ays	(ppr	(m
То	%			T.S.	Ore Min.	Gangue	Ft.	0/0	Rock Type,	Structure,	Etc.	No.	Cu		Zn	7.	_
							11111	Mag	Meta-agglomerate			47	210	5	60	<.02	2
				1	Diss. cpy increasing Native Cu		480	**************************************	oxide Cu on fracs. + cp	y stringers	476.5 <u>'</u> -	48	1200	5	75	0.05	+
				1 1	Disseminated cpy & bornite, altered to		1		Meta-agglomerate,	but more as	ndesiticz	49	295	5	65	4.02	1
					Native Cu in oxidized zones		490	Mag	No. 49-A: 1150,	5, 55,<.02,0.2	2 {487.2' = 488' = 490' -	49					1
					Sparadic, was disseminated cpy of bornite		+					50	370	5	60	4.02	2
					Native Cu on France		500		SW		500'-	F:	0.7				
					"		510		sw		510' -	51	230	5	60	"	
							111111	Mag				52	185	5	115	15	
					,,		520		sω 2" FAULT		520'-						
							- 530 -		Finer-grained, mo	ore andesit	c Mag 530'=	53	65	5	100		
				,	Cu mil		11111	Mag				54	40	5	65	,,	
							540				540'-						

Foot	age	Int.	R.	Alt	eratio	n *		Mineraliza	tion	Grapm	Log	General	Description			0	Δ33	dvs.	(ppm	2
rom			%				T.S.		Gangue	Ft.	4		Structure, Etc.	Ì	Na	Cu	РЬ		Au	
								Cu nil		11111	Mag		,		55	195	5		∠,02	
								Traces Cu		550	É	SW	3	550'—	_					
	560	51	100					Cunil		-560 -					56	95	5	60	"	,,
60												Meta-andesite: Fire	ne, dense							
								Cunil		11111	Ma				57	40	5	110	"	,,
								Large streaks	_	570			4	57/'-						
								of cpy, some Native Cu			3,2			73′_	58	Mari	5	120	"	0.8
577	<i>5</i> 77	17	100	+				Scattered		580		streaks of cpy Meta-agglomerate		580'—	59	520	5	100	И	0.,
50.00	58 <u>5.5</u>	8.5	100					streaks of Cpy			Mag			180 —						
585								Very little CPY > Scattered	·F//	590	•	Meta-andesite, la epidote increasi	ocally agglomeras	4c, 590'—	60	310	5	95	"	0.,
								Weakly	Epidote increasing	11111	Ma Ma		•		61	255	5	75	4	0.
								Cunil	_	600	•			600'-						-
	606	20.5	100					Ca nii		=					62	3.4	_			_
606	608		100					"		\exists	Mapy	Meta-porphyritic and	desite		62	310	5	85	"	0.
HOA								"		610	Mag	Meta-agglomerate		610'-						

		-0	7						_		1	-	_		,	\
Foota	ge	Int.	Rec.	Alteration *	-	Mineraliza	ition	Graphi	u Log	General Description		,		ays		1 .
From	То		%		T, S	. Ore Min.	Gangue	Ft.	dia	Rock Type, Structure, Etc.	No.	Cu	Pb	Zn	Au	Ag
	612	4	100			Cu nil		1 -	Magi.	Meta-wagglomerate					-	
612	613.5	1.5	100					I -		Green speckled andesite	-					
6/3.5	621.7					Trace apporpy Scattered	_	620	dior.	Quartz diorite: very fine-grained, very little if any foliation (ie. post-metamorphics) 620		135	5	190	∠.02	0.2
621.7	(241.7	, V , cd	100			streaks and specks of cpy Trace cpy in 6	Buil quartz veir	,	70	sω	64	265	5	85	11	"
						la vark		630		630'						
						Very weak, very widely scattered disseminated CPY		640	Ma	640'		205	5	175	"	<.2
								11111111			66	205	5	85	n	11
						game		650 =	Ma	650	67	140	5	65	-	1/
	666	443	100			Quantity (l"calcite vein	660		. 660	68	65.	10	80	и	н
666	676		100			same.		670	Map 0	Meta-porphyrite andesite	69	350	5	14	0 4	0.2
676	680.					Swifides trace to mil		680	Ma	Meta-andesite	70	210	5	211	s .	4.2

Foot	age	Int.	Provide	Alt	erat	ion *			Mineraliza	tion	Gram	Log	General Description		-	Ass	ays ((ppm	"
From	То		%					T.S.	Ore Min.	Gangue	Ft.	010	Rock Type, Structure, Etc.	No.	Cu	Pb	Zn	Au	Ag
6 80.8									Cu trace to gil		T :	Map.	Meta-porphyritic andesite (Fine-grained 83' 683', Cu increasing Carse-grained	70	(se	; р.	10)		
684	684	3,2	100	-	-				•	with epidote	===			71	700	5	195	2.02	0.2
	688	4	100						Cu nare	F. Calcite		Ma	686'—	22	726	-			,,
688											690 -	35	Meta-applomerate 690'-	12	335	5	145	"	-
			1.								E		Meta-andesite, agglomeratic						
											1 3	Ma		73	100	5	170	"	4.2
	699	11	100							2"epidote vein -	1	4							
699	GATT		100								700 -		Meta-andesite 700'-	-	_			-	-
											=								
											1 3	Ma	692-718 HEAVILY FRACTURED	74	135	5	145	"	"
										l'andre ven	1 3	ria_			}				
									Cu mil	6 epidote vein.	710		710'-			-			
]								
												Ma	\	75	240	5	115	"	"
							,			Ma epidotized	/— E =								
		a.r									720 -	VEIN 85	SW Vein: Quartz, chlorite, epidote, trace cpy and bornite @ 721.7'	76	430	5	180	"	0.2
723	723	24	103		1					Well	1 3			-					
	727	4	100						"	epidotized	4 3	Mag	Andes, tic meta-agglomerate	77	205	~	185	.,	,,
727	730.5	3.5	150						"	chlorites epidote	730	Map 70	Meta-porphyritic andesite SW (NO MAGNETITE)	' '	203	5	103		
730.5		37,5							scattered bleb	-	5	•	Meta-andesite 731'-						+
	735	4.5	100						of bornite			· Ma		70	204	-	110) ,,	,,
735	737.8	2.8	100						Cunil	3"garnet common epid	-	Mag.	Meta- agglomerate	18	280		///		"
	739	1.2	100			-	-		bleb conta	rn.		Ma	Meta-andesite				-	-	+
739									Occassional traces of cpy & bornite		740 -	Mag	Meta-agglomerate	50	230	5	160		.,
	746.5	7.5	100								_ =	6. 14		79	140		100		
746.5									trace bornite of	I"gtz-epid ve	750	Ma	Me he-andesite 749'						-

Foot	ige .	Int.	Dec.	Alte	ration	*		Mineraliza	ation	Graphi	c Log	General	Description			A 8 3	ays (ppm	.)
rom	То		%				T.S.	Ore Min.	Gangue	Ft.	Ollo	Rock Type,	Structure, Etc.	No.	Cu			Au	1
	757	10.5	100					Rare cpy-bornne	l"bull guartz-	-	-Ma-75	ïω		80	55			2.02	
57	131	70.3	700							760		Meta-agglomerate,	black 75°	,-					
								<i>"</i>			Mag			81	135	5	145	"	"
747	771.7	14.7	100							770			76	9-					
7/.7								Scattered blebs of cpy-bornite		. 1	Ma	Meta-andesite		82	225	5	100	,	"
79	779	7.3	100			+		Very weak		780		Black make a solo	nam fa			_			
								sulfides — Scattered traces of		111111		Black meta-agglon	renaire.	83	225	5	115	.,	"
		í						cpy-barnite		790 -	Mag		78	9'-					
										11111				84	230	5	95	"	"
								same only less Cu		800 -			799		295	5	100	,,	"
								same		810 -	•		80	7'-					
1/5	815	36	100							-	0.0	— Calcitic Fault		86	290	5	70	"	"
								بقدمة فعلج	3*Epid, chipphe	820	Map 75	sw Meter-perphyrith	c andeside	9'_					

Foote	age	Int.	The said	Alte	ration	*		Mineraliza	ition	Graphi	Log	General Description			Ass	ays	loon	7
ram	То		%				T. 9	Ore Min.	Gangue	Ft.	dia	Rock Type, Structure, Etc.	No.	Cu		_	1 .	$\overline{}$
								Very minor cpy-bornite	Abundant	111111	Map.	Meta-porph, andosite	87	110	5		4.02	
28.5	828.5	13.5	100		-	+	-	same scant traces	ame		· Ma	Green speckled meta-andesite 8291.	+	-				_
31.5	831.5	3	100	-		+		to nil Cu		830 -	· Ma	ores, spenie med adding	-					
								same		11111		Porphyritic meta-agglomerate. 839'	88	120	5	125	~	,,
								widely		840 -		837						
								scattered traces of cpy and		1111	Mag		89	120	5	85	"	"
								lesser bornite		850		8491						
								DOTTINE.					90	195	5	80	u	"
	<u>860.5</u>	27	100						3"Epidote veil	860		859	,					
860.5								scattered traces of cpy, invens- ing in last 2'			Ma	Meta-andesite, fine-grained, and minor meta-agglomerate layers	91	570	5	155	"	"
										870 -		869	+					
								scattered traces cpy? (no Nat. or ox. Cu in oxid. zones		11111	Ma		92	230	5	75	*	"
										880-		879	+					
	884.5	26	100					same					93	520	5	95	,,	"
786.5	,							same.		200	Ma	Meta-andersto, conser-grained 889 (biotite schist)	,					

Foot	age	int.	Rec.	Alte	eratio	n *		Mineraliza	ation	Graphi	Log	General Description		-	Ass	ays ((pp)	7
From			%				T.S.		Gangue	Ft.	0/10	Rock Type, Structure, Etc.	No.	Cu		Zn		
								same		THE PERSON NAMED IN		Mela-andes, te, coarse-grained (bio. schist)		215	5		<i>L.</i> 02	
	400	22.5	100					very little Cu		900	Ma -	more agglomeratic	95	260	5	153	"	••
409	912.5							"		910	Mag	Mela-agglomerate						
912.5								"			M5?	Mek-sediment?	96	90	.5	135	,,	"
915										1 =		Agglomeratic meta-andesite						
								**************************************		920 -	Ma	Note: Rock is magnetic except where cut by epidote stringers, i.e. magnetic is primary and is destroyed by later, secondary epidote. 929'-	97	115	. 5	100	"	"
	933	18	100							7.30 =								
933								Minor Traces of Cpy	epidote	940	Mag	Meta-agglomerate: dark green, epidotized and chloritic with contorte white calcite stringers.	98	215	5	120	*	,
									and chlorite abundant	,		and it is in ingars.		125	5	130	н	
	951	1.2	100							950 -		949						
951								Linge. xls of seck oxide cu	Carbonate spec tabundantep		Ma	Meta-andesite - No MAGNETITE, except in last 1.5'	100	110	5	105		"
								large x/s of	very chloritic Locally Fluido with epidote	960	Ma	No Magnetite 959'						_

		-	1											á				
Footage	6	int.	Rec.	Al:	terati	on *		Mineraliza	ation	Graphi	c Log	General Description		-	Ass	ays (Pin	n)
From To	0		%				T, S	. Ore Min,	Gangue	Ft.	d/Q	Rock Type, Structure, Etc.	No.	Cu	РЬ	Zn	Au	Ag
								Scattered braces of Cpy & py-pyr.	very chloritic		Ma 30	Meta-andesite sw 969'-	101	115	5	95	4.02	2.2
									Bull gtz. vein- same. 2"Bull gtz. vein-	970 -	Ma ·	NO MAGNETITE	102	90	5	95	"	,,
	59	39	100					Same	Bull gtz. veins. "" Irregular gtz with magnetite	bdes	Mag Mag	Dark green meta-agglomerate, epidotized and chloritic with contorted, white calcite stringers	/03	85	5	95	,,	,,
989								Vent Same	Epid. & pink K-spa Chloriha	140	Mag :	Meta-agglomerate, chloritic, and NO MAGNETITE 999'-	104	60	5	80	"	*
100	06.5	17.5	100					same.	Very	1000		Meta-andesite.	-	//5	5	125	,,	"
101	//	4.5	100			3			same	1010	Ma	No MAGNETITE 1009'= Mela-agglomerate, chloritic No MAGNETITE	106	85	5	105	***	"
								same, but mostly pyrrhotite	3"Bull gtz. Vein	1020	Mag	1019'-	107	95	5	115	,,	
									3" K-spar-Epid. Vern		Ma Ma	Now and site = No MARNETHE 1029'- K-spar - Epidote flooding						

Foot	oge	Int.	rhyd.	Alteration	*	Mineraliz	ation	Grapmic	Log	General Description			-	Ass	ays	(ppr	2
Fram	To		%		T. S	6. Ore Min.	Gangue	Ft.	DIP	Rock Type, Structure, Et	c.	No.	Cu		Zn		_
1030.5	1037					Scattered xls of pyr common. Hardly any	Chloritic	1 3	Mag	Meta-agglomerate with thin interior of andesite. No MAGNETITE	layers	108		.5		4.02	
1039	1043		100			cpy	1043: 4" shica ven	1040	Map	Meta-porphyrihe andesite No MAGN.							
7073						same	same	+ = 1-	Ma	Meta-andesite, well-fractured No MAGNETITE	1649'-	109	135	5	95	"	"
						Lots of pyr disseminated and on	Same	1050		Distorted foliation Fine-grained		110	105	5	110	.,	,,
•						fractures		1060	Ma	Meta-agglomorate	1059'-	110					
	1061	26	100			Abundant diss. of frac. Pyr. Trace Cus??	Buil of the tepid. The second of the second		Ma Ma			111	160	5	60	"	"
1069						Less pyr, but still fairly comm as above			75-11	Meta-andesite and porphyritic andesite, interlayered		112	70	5	90	"	"
						Cu nil	chloritic	1880	-1-	NO MAGNETITE	1079'-						
	1089	20	100				į		000		1088.6'_	113	180	5	65	*	*
1089						Scattered Pyr Lu nil	3º BNI Otz.		Map D Map	Meta-porphyritic andesite No MAGNETITE Distorted foliation (fault?)	1098'-	114	115	5	85	"	"

Foote	ige	Int.	Transfe	Alteratio	n #		Mineraliza	ition ,	Granin	Log	General Description		0	Ass	ays	Pom)
rom	То		%			T.S.	Ore Min.	Gangue	Ft.	ď	Rock Type, Structure, Etc.	No.	Cu	РЬ	Zn		
100.2		2.4				1.0.	Less pyr	"		Ma	Meta-andesite, distorted No MAGN.	INO.	Lu	7.6	_An	71K	76
104	110#	3.8	100				Little pyr			Map	very chloritic 1108'7	115	115	5	95	L.02	۷.
	1//2.5	8.5	100				*	-Chlorite-	1110	Map 10	difformed No MAGN. and punky						
12.5							Pyr weak to fairly abundant	NOTE: Biotite abundant Chlorite		3 0 -	Looks conglom- eratic in first K'. Meta-sediment? (Biothe schist) No MAGNETITE 1118'-	116	35	5	115	,,	"
							Ca nil	ceases abruptly	1120	Ms		117	40	5	160	,,	,,,
									1130		1128'-						
							Abundant pyr, diss. ton fracs. Cu nil	biotific			Same, finer-grained (Some scattered MAGNETITE from) 1134-1139'	118	55	5	185	4	**
						i			1140	Ms							
							same Cu nil	same			NO MAGNETITE	119	45	5	2/5	"	0.
									1150		- Sparse MAGNETITE 1148'-						
									11111		NO MAGN.	120	30	5	190	"	۷
	1161.8	49.3	100				1.		1160		1158'=						
65.3	<u> 1163</u> 11653						little EFF	no chlor.	-	eria.	Fine-graned meta-agglom or meta-ash flow Meta-applomerate andesity	121	55	5	215	0.05	0.:
							Cu nil	i	1170	Mag	Meta-agglomerate, andesite 1167.5'-	122	(40	e p.	(8)		

ootage	In	Aug.	Alte	ration	*		Mineraliza	ation	Grapmic	Log	General	Descriptio	n			Ass	ays	(PP	n)
om To		%				T. S.	Ore Min.	Gangue	Ft.	A	Rock Type,	Structure,	Etc.	No.	Cu	РЬ		1	_
							same			g	No MAGNE	FTITE		/22	50	5	185	2.02	a
							3-5%: Pyr \$ Py cpy??		1180		^		//79'-	/23	55	5	205	,,	4
								и	1190	lao	Scattered, spotty - MAGNETITE		//87 [/] -	124	50	5	145	,,	"
									1200				1196,5	/25	55	5	1/5	,,,	
									1210	_			1206.5'-	121	15		126	,,,	
						:	same	"	11111	ag	same MAGN.		1216' -	126	65	5	125		
1223:	7 58.4 0.8	100					No Swlfide	chloritic)	1220	<i>a</i> -	Mariantan			127	55	5	140	"	0.
24.5 25.5 1226.8	/	100					No sulfide		1		Meta-andesite (po Meta-anglomerar Meta-andesite (po	le	1226						
							common Pyr, Pyt Cpy diss. t on fracs.	No Chlorite Silica flooding	1 1	lag?	Meta-agglomera silicified? No r	te?, fine, de NAGNETITE	nse, 1236' =	128	45	5	135	"	4.
							4 on Macs.		1240					129		see	p.	19)	

Foot	ge	Int.	Red.	Alter	atlor	*		Mineraliza	tion	Graphic	Log	General Description			Ass	ays	(ppi	n)
From	То		%				T.S.	Ore Min.	Gangue	Ft.	DIP	Rock Type, Structure, Etc.	No.	Cu	Pb	Zn	Au	A
	243.5	14.7	100					"	,,	3	Mag?		100	80	5	145	107	1
243.5	X + 3. 3	10.11	700							7 7		Meta-perphyritic andesite, silicic 1245.5	129	00	3	775	2.02	~ "
	, a cla	ے ہے						"	*	1 31	Mapa	NO MAGNETITE						
1249	1249	3,3	100							1250	4	Various meta-andesites, some porphyritic,	130	195	5	160	"	0.2
								"	*	1 = 1	Ma	still siliceous. No MAGNETITE	/20					
255.4	255.4	6.4	100		-	-	-						-					_
233,7										. =		Meta-agglomerate (fine-grained) or ash flow or crystalline tuff. Quartz eyes not apparent, but rock is well silicified. No MAGNETITE						
										1260	1/1/	ash flow or crystalline tutt. Quartz	131	50	5	120	,,	4:
										1 E		Silicified. No MAGNETITE	131	30	9	140	"	
										-	11	/265.5						
										1	1.1	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
								. ,,	"	1270-	7		/32	65	5	115	"	"
]	March							
										j.	1	1275						
										1280	77	} well fractured			_			
							H				11		133	45	5	105	,,	"
										Ξ.		1285						
				1						= -	7	Ma: pre-mineral dike?						
1289.7	12-17	34.3	100	-	-					1290-			-					
, 20 ,								Less sulfide	"	=	Ma	Speckled andeste and 1/2" Bull Qtz. Vein Meta-andeste, fine grained, sikeous	134	/35	.5	135	"	"
	12955	5.8	100							_ ₹	112	No MAGNETITE						
1295.5								Barren	"	1 3	gn	Hybrid? zone Fine-grained, gneissic (chill margin??)	125	11.				
T.D.	1299	3.5	100							_ 1299 -	99n? T.D.	Brothe gness - possible intrusive	135	40	5	90	"	"
										3	1.0.							
										=								
										1 3		·						

SKYLINE LABS, INC.

Hawley & Hawley, Assayers and Chemists Division P.O. Box 50106 • 1700 West Grant Road Tucson, Arizona 85703 (602) 622-4836

REPORT OF SPECTROGRAPHIC ANALYSIS

Job No. 122753 H&H No. 772569 December 10, 1977

U. S. Borax Attention: Mr. Barry French 1802 West Grant Road, #108 Tucson, Arizona 85705

Values reported in parts per million, except where noted otherwise, to the nearest number in the series 1, 1.5, 2, 3, 5, 7 etc.

		S	ample Number		
Element	B-1-1	B-1-5	B-1-10	B-1-15	B-1-20
Fe	10%	5%	15%	10%	10%
Ca	2%	2%	1.5%	3%	1.5%
Mg	.5%	1 %	18	18	18
Ag	<1	<1	<1	<1	<1
As	< 50 0	< 500	< 5 00	< 5 00	< 500
В	10	<10	20	30	10
Ba	20	10	5 00	200	15 0
Ве	<2	<2	2	<2	<2
Bi	<10	<10	<10	<10	<10
Cđ	<5 0	<50 ·	<50	<5 0	< 5 0
Co	10	5	20	20	10
Cr	20	15	1.0	20 0	10
Cu	100	20	100	15 0	70
Ga	<10	<10	20	. 10	10
Ge	<20	<20	<20	<20	<20
La	<20	20	<20	<20	<20
Mn	5 00	500	300	500	30 0
Мо	<2	<2	<2	<2	2
Nb	20	<20	20	20	20
Ni	5	5	5	50	5
Pb	10	<10	15	10	10
Sb	<100	<100	<100	<100	<100
Sc	20	10	30	20	20
Sn	<10	<10	<10	<10	<10
Sr	200	<100	20 0	2 00	20 0
Ti	7,000	5,000	7,000	7,000	7,000
V	200	200	200	150	150
W	<50	<5 0	<50	<50	<50
Y	10	<10	20	10	10
Zn	<200	. <200	<200	<200	<200
Zr	` 50	<20	100	7.0	100

SKYLINE LABS, INC.

Hawley & Hawley, Assayers and Chemists Division P.O. Box 50106 • 1700 West Grant Road Tucson, Arizona 85703 (602) 622-4836

REPORT OF SPECTROGRAPHIC ANALYSIS

Job No. 122747 H&H No. 772687 December 10, 1977

U. S. Borax

Attention: Mr. Barry French 1802 West Grant Road, #108 Tucson, Arizona 85705

Values reported in parts per million, except where noted otherwise, to the nearest number in the series 1, 1.5, 2, 3, 5, 7 etc.

			S	ample Number			
Element	B-1-47	B-1-51	B-1-56	B-1-61	B-1-66	B-1-71	B-1-76
Fe	10%	10%	10%	10%	10%	7%	10%
Ca	2%	2%	3%	2	1.5%	1%	2%
Mg	1%	.7%	1%	1%	.5%	. 2%	.7%
Ag	<1	<1	<1	<1	<1	<1	<1
As	<500	<500	< 50 0	<5 00	<50 0	<500	< 5 00
В	10	20	<10	<10	10	<10	10
Вa	200	3 00	200	5 00	200	5 00	100
Вe	< 2	<2	· <2	<2	<2	<2	<2
$\mathtt{B}\mathbf{i}$	<10	<10	<10	<10	<10	<10	<10
Cd	<50	<50	<50	<50	<50	<50	<50
Co	1 5	15	10	10	7	5	7
Cr	20	20	10	30	20	20	10
Cu	5 0	15 0	200	100	100	15	15 0
Ga	<10	15	10	10	10	10	10
Ge	<20	<20	<20	<20	<20	<20	<20
La	20	20	20	20	20	20	5 0
Mn	50 0	500	700	700	700	300	5 00
Mo	2	<2	<2	2	<2	<2	<2
NЪ	20	20	20	20	20	20	20
Ni	7	7	7	7	5	5	5
РЪ	<10	10	10	10	<10	<10	<10 .
Sb	<100	<100	<100	<100	<100	<100	<100
Sc	20	20	20	. 20	15	10	15
Sn	<10	<10	<10	<10	<10	<10	<10
Sr	100	300	5 00	5 00	200	5 00	200
Ti	5,000	5,000	7,000	5,000	5,000	2,000	3,000
v	150	100	150	100	100	30	70
W	<50	<50	<50	<5 0	<50	<50	<50
Y	15	15	20	15	15	15	15
Zn	<200	<200	<200	<200	<200	₹200	<200
Zr	10 0	100	100	· 100	100	STERED AND	100
					//	E STEICATE OF	2 1 /

Willia Manage

William L. Lehmbeck
Arizona Registered Assayer No. 9425

Charles E. Thompson Arizona Registered Assayer No. 9427

Element	B-1-25	Sa B-1-30	ample Number B-1-35	B-1-40	B-1-45
Бтеме пс			B 1 133		D 1 43
Fe	7%	10%	5%	10%	10%
Ca	3 %	3%	1.5%	3%	5%
Mg	1%	1.5%	.5%	.78	1.5%
Ag	<1	<1	<1	<1	<1
As	<50 0 .	<50 0	<50 0	<50 0	<50 0
В	10	10	<10	20	10
Ba	15 0	20 0	15 0	15 0	20 0
Ве	< 2	<2	<2	<2	. 2
Bi	<10	<10	<10	<10	<10
Cđ	< 50	<5 0	<50	<5 0	<50
Со	20	10	5	10	10
Cr	200	10	<10	<10	100
Cu	100	20 0	150	200	15 0
Ga	<10	10	<10	10	10
Ge	< 20	<20	<20	<20	<20
La	<20	20	20	20	20
Mn	30 0	J.,000	50 0	1,000	50 0
Мо	<2	2	<2	<2	<2
Nb	20	20	<20	20	20
Ni	30	. 5	<5	<5	5 0
Pb	<10	10	<10	10	10
Sb	<100	<100	<100	<100	<100
Sc	30	20	10	15	20
Sn	<10	<10	<10	<10	<10
Sr	200	50 0	10 0	100	20 0
Ti	5,000	7,000	3,000	5,000	5,000
V	100	100	70	100	100
M	<50	< 50	<5 0	<50	< 5 0
Y	10	15	10	15	15 <2 00
Zn	<200	<20 0	<20 0	<200 70	100
Zr	70	10 0	5 0	70	T00

9425 WILLIAM L WILLIAM L LEHMBECK Manager Manager Manager

SKYLINE LABS, INC.
SPECIALISTS IN EXPLORATION GEOCHEMISTRY

Attention:

SKYLINE LABS, INC.

P.O. Box 50106 • 1700 West Grant Road Tucson, Arizona 85703

(602) 622-4836

Barry French

1802 West Grant Road, #108

Tucson, Arizona 85705

Job No. 772989-Part II Job No. DSJ 010 PAGE 1 January 16, 1978

ITEM NO. SAMPLE NO.

REPORT OF SPECTROGRAPHIC ANALYSIS 1 = E-2-001

2 = B-2-0053 = B-2-010

4 = E-2-015

5 = B-2-020

6 = B-2-025

7 = B-2-0308 = B-2-035

Values reported in parts per million, except where noted otherwise, to the nearest number in the series 1, 1.5, 2, 3, 5, 7 etc.

ITEM	1	2	3	4	5	6	. 7	8
ELEMEN	T				٠.			
Fe	10%	10%	10%	10%	3%	15%	10%	10%
Ca	7%	7%	2%	7%	1%	5%	2%	10%
Мэ	1%	1%	. 5%	1%	. 5%	1%	. 7%	2%
Aз	<1	<1	<1	<1	<1	<1	<1 ["]	<1
As	<500	<500	<500	<50 0	<500	<500	<500	<500
В	20	20	10	10	<10	20	. 10	20
Ba	200	300	100	200	10	300	100	50 0
Be	<2	<2	<2	<2	<2	<2	<2	<2
Bi	<10	<10	<10	<10	<10	<10	<10	<10
Cd	<50	<50	<5 0	<50	<50	<50	<50	<50
Co	10	15	-10	20	5	10	10	20
Cr	<10	15	10	15	<10	15	15	70
Cu	150	100	150	200	100	300	300	5 0
Ga	10	10	15	30	<10	15	15	20
Ge	<20	<20	<20	<20	<20	<20	<20	<20
La	20	20	20	20	20	20	20	20
Mn	1000	700	700	1000	500	1000	700	1000
Mo	2	<2	2	2	<2	<2	2	<2
ИЬ	20	20	20	20	<20	20	20	20
Ni	<5	- 5	<5	<5	<5	<5	<5	20
РЬ	70	.10	10	20	10	10	15	15
Sb	<100	<100	<100	<100	<100	<100	<100 -	<100
Sc	20	20	15	20	10	20	15	20
Sn	<10	<10	<10	<10	<10	<10	<10	<10
Sn	30 0	500	300	700	<100	200	300	500
Ti		10000	500 0	700 0	3000	10000	50 00	7000
V	100	200	100	150	70	300	100	200
W	<50	<50	<50	<50	<5 0	<5 0	<50	<5 0
Υ	20	15	15	20	10	<10	15	15
Zn	<200	<200	<200	<200	<20 0	<200	<200	<20 0
2r	100	100	100	100	30	100	70	70

Job No. 772989-Part II Job No. DSJ 010 PAGE 2 January 16, 1978

ITEM NO.		SAMPLE NO.
9	=	B-2-040
10	=	B-2-045
11	=	B-2-050
12	=	B-2-055
13	=	B-2-040
14	=	B-2-065
15	=	E-2-070
16	=	B-2-075

ITEM	9	10	11	12	1:3	14	15	16
ELEMENT Fe Ca Mg	10% 3% 1%	5% . 5% . 2%	10% 5% 1%	10% 7% 1% ·	10% 2% 1%	10% 7% 2%	10% 7% 2%	7% 5% 1. 5%
As	<1	<1	<1	<1	<1	<1	<1	<1
As	<500	<500	<500	<500	<500	<500	<500	<500
B	10	20	10	10	10	10	10	10
Ba	300	5	300	300	500	500	1000	1000
Be	<2	<2	<2	<2	<2	<2°	<2	<2
Bi	<10	<10	<10	<10	<10	<10	<10	<10
Cd	<50	<50	<50	<50	<50	<50	<50	<50
Co	5	5	15	15	10	-15	20	10
Cr	20	<10	10	10	10	100	100	10
Cu	100	150	300	300	200	200	150	150
Ga	15	15	15	15	15	15	10	10
Ge	<20	<20	<20	<20	<20	<20	<20	<20
La	20	20	20	20	50	20	20	50
Mn	700	500	700	700	1000 .	1000	1000	1000
Mo	62	<2	2	2	2	2	2	2
Nb	20	<20	20	20	20	20	20	20
Ni	<5	<5	5	<5	<5	10	50	5
Pb	20	20	15	10	10	20	10	10
Sb	<100	<100	<100	<100	<100	<100	<100	<100
Sc	10	<10	-20	20	20	20	20	20
Sn	<10	<10	<10	(10	<10	<10	<10	<10
Sr	200	100	500	500	200	700	500	500
Ti	3000	1000	7000	7000	5000	7000	5000	5000
V	70	70	100	200	150	100	200	200
W	<50	<50	<50	<50	<50	<50	<50	<50
Y	15	<10	20	15	20	20	10	15
Zn	<200	<200	<200	<200	<200	≤200	<200	<200
Zr	100	20	70	50	100	70	70	70

SKYLINE LABS, INC. SPECIALISTS IN EXPLORATION GEOCHEMISTRY

Job No. 772989-Part II Job No. DSJ 010 FAGE 3 January 16, 1978

I.	TEM	NO.		SAMPLE NO.
		17	=	B-2-080
		18	=	B-2-085
		19	=	B-2-090
		20	==	E-2-095
		21	=	B-2-100
		22	==	B-2-105
		23	=	B-2-110
		24	=	B-2-115

ITEM	17	18	19	20	21	22	23	24
ELEMEN Fe Ca Mg	10% 7% 2%	10% 5% 1%	7% 10% 2%	10% 5% 2%	15% 15% 5%	15% 10% 10%	15% 7% 5%	10% 10% 5%
As	<1 < < < < < < < < < < < < < < < < < <	<1	<1	<1	<1	<1	<1	<1
As		<500	<500	<500	<500	<500	<500	<500
B		<10	<10	20	<10	10	<10	10
Ba		300	300	500	100	50	200	150
Be	<2	<2	<2	<2	<2	<2	<2	<2
Bi	<10	<10	<10	<10	<10	<10	<10	<10
Cd	<50	<50	<50	<50	<50	<50	<50	<50
Co	15	15	10	15	50	50	20	20
Or Ou Ga Ge	15 50 20 <20	10 200 15	50 150 20 K20	<10 200 20 <20 <20	700 150 15 (20	500 100 20 K20	100 200 10 <20	300 100 10 <20
La	20	50	20	20	<20	<20	<20	<20
Mn	1000	1000	700	1000	1500	2000	1000	1000
Mo	2	2	<2	<2	2	2	2	<2
Nb	20	20	20	20	20	20	20	20
Ni	10	<5	10	<5	100	50	30	100
Pb	20	15	15	<10	<10	10	10	10
Sb	<100	<100	<100	<100	200	100	<100	100
Sc.	30	30	15	20	30	30	30	20
Sn	<10	<10	<10	<10	<10	<10		<10
Sr	1000	500	700	100	300	500	200	500
Ti	7000	7000	5000	7000	5000	7000	5000	3000
V	300	100	100	100	200	300	200	100
W	<50	<50	<50	<50	<50	<50	<50	<50
Y	15	20	15	15	10	15	<10	10
Zn	<200	<200	<200	200	<200	200	<200	<200
Zr	50	70	50	100	30	30	30	30

SKYLINE LABS, INC.
SPECIALISTS IN EXPLORATION GEOCHEMISTRY

Job No. 772989-Part II Job No. DSJ 010 FAGE 4 January 16, 1978

ITEM NO. SAMPLE NO. 25 = B-2-120 26 = B-2-125 27 = B-2-13028 = B-2-135

11EM	25	26	27	28
ELEMEN Fe Ca Ma	10% 5% 1, 5%	10% 15% 2%	10% 5% 2%	10% 7% 2%
As	<1	<1	<1	<1
As	<500	<500	<500	<500
B	<10	<10	<10	10
Ba	200	300	300	500
Be	<2	<2	<2	<2
Bi	<10	<10	<10	<10
Cd	<50	<50	<50	<50
Co	<5	5	20	5
On	15	10	100	10
Ou	30	50	150	150
Ga	10	15	10	10
Ge	<20	<20	<20	<20
La	20	50	20	20
Mn	1500	1000	500	700
Mo	<2	10	3	2
Nb	20	20	20	20
Ni	<5	<5	30	<5
Pb	20	30	20	15
Sb	<100	<100	<100	<100
Sc	10	20	20	20
Sn	<10	<10	<10	<10
Sr	300	1000	200	200
Ti	7000	7000	5000	7000
V	50	50	70	50
W	<50	<50	<50	<50
Y	10	20	10	20
Zn	200	<200	<200	<200
Zr	200	150	100	100

9425 WILLIAM V LEHMBECK WATTIAM VA TECHMORIZA Manager

LEGEND - SURFACE PROJECTION OF CONDUCTORS VLF EM . CONDUCTOR O POSSIBLE CONDUCTOR PLAN MAP BROMIDE PROJECT RIO ARRIBA COUNTY, NEW MEXICO by polied geophysics POSSIBLE CONDUCTOR SCALE | | "= 1000" SEPTEMBER 1977 MAP4

